Supplementary Information

(+)-BINOL and Pure Shift Experiment: A Bidirectional Approach for NMR Chiral Discrimination of Overcrowded Spectra of Primary Amines

Juliana C. Merino, Artur F. Keppler and Márcio S. Silva*

Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), 09210-380 Santo André-SP, Brazil

Experimental considerations

Deuterated solvents (99.9% purity with 0.03% v/v of TMS) were purchased from Sigma-Aldrich[®].

The chiral gas-chromatography (GC) analyses were performed in a Shimadzu GC-17A instrument with an FID detector using hydrogen as a carrier gas (100 kPa). Chiral column Chirasil-Dex CB β -cyclodextrin (25 m × 0.25 mm) was used for the determination of enantiomers molar ratio.

500 MHz acquired the NMR spectra. The model of NMR equipment 500 MHz is an Agilent equipped with a BBO (direct broad-band observe) probe. The ¹H NMR chemical shifts are reported in parts *per* million (ppm) relative to tetramethylsilane (TMS) peak (δ 0.0 ppm). The data are reported as follows: chemical shift (δ), multiplicity (s = singlet, s = broad singlet, d = doublet, t = triplet, q = quadruplet, qt = quintet, st = sextuplet, m = multiplet), features of signal (br = broad, ap = apparent) and coupling constant (*J*) in hertz and integrated intensity.

Typical procedure for ¹H NMR chiral discrimination of primary amines

The ¹H NMR spectra were recorded at 500 MHz using 8 scans and 4.67 s of acquisition time at 27 °C probe temperature. For processing the NMR spectra was used 0.1 of line broadening and 64 K of sized of fid. Samples for NMR spectroscopy were prepared by weighing and dissolving the appropriate amount of substrate in the respective deuterated solvent to prepare a 0.1 mM solution. The solutions were shaken for 2 min for equilibration time.

The ¹H NMR pure-shift experiments were acquired using the pure shift 1D pulse sequence from Agilent Technologies Inc. 2014 (VNMRJ 4.2) with 64 scans, 1.68 s of acquisition time, 2 s of relaxation delay, 60 m of slice selection bandwidth and 10 Hz for coupling constant (J) delay.

^{*}e-mail: s.marcio@ufabc.edu.br

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2a** by 0.5 equiv. of (+)-BINOL at 27 °C.

Figure S2. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2a** by 1.0 equiv. of (+)-BINOL at 27 °C.

Figure S3. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2a** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S4. ¹H NMR spectra (500 MHz, CDCl₃) of methylene CH₃ and methine CH groups for chiral discrimination of amine **2a** using 0.5, 1.0 and 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S5. Determination of enantiomers molar ratio by chiral gas-chromatography analysis of acetyl amide prepared from amine **2a**. The chiral GC analysis of primary amine **2a** has shown a lower baseline-resolution.

Figure S6. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2b** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S7. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2c** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S8. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2d** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S9. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2e** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S10. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2f** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S11. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2g** by 2.0 equiv. of (+)-BINOL at 27 $^{\circ}$ C.

Figure S12. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2h** by 2.0 equiv. of (+)-BINOL at 27 $^{\circ}$ C.

Figure S13. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2i** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S14. ¹H NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2j** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S15. ¹H pure-shift NMR spectrum (500 MHz, $CDCl_3$) for chiral discrimination of amine **2i** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S16. ¹H pure-shift NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2e** by 2.0 equiv. of (+)-BINOL at 27 $^{\circ}$ C.

Figure S17. ¹H pure-shift NMR spectrum (500 MHz, CDCl₃) for chiral discrimination of amine **2j** by 2.0 equiv. of (+)-BINOL at 27 $^{\circ}$ C.

Figure S18. *J*-Resolved NMR 2D spectrum (500 MHz, CDCl₃) for chiral discrimination of primary amine **2g** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S19. Deconvolution fit of chiral discrimination of primary amine 2g by 2.0 equiv. of (+)-BINOL in CDCl₃ at 27 °C.

Figure S20. HSQC-edited NMR 2D spectrum (500 MHz, CDCl₃) for chiral discrimination of primary amine **2d** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S21. ¹H NMR spectrum (500 MHz, benzene- d_6) for chiral discrimination of amine **2e** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S22. ¹H NMR spectrum (500 MHz, benzene- d_6) for chiral discrimination of amine **2j** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S23. ¹H NMR spectrum (500 MHz, benzene- d_6) for chiral discrimination of amine **2d** by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S24. ¹H pure-shift NMR spectrum (500 MHz, benzene- d_6) for chiral discrimination of amine 2d by 2.0 equiv. of (+)-BINOL at 27 °C.

Figure S25. Effect of (+)-BINOL 1b on chemical shift differences ($\Delta \delta$) and chemical shifts (δ) of enantiomers in the NMR chiral discrimination of the primary amine 2g. Lower spectrum is amine 2g without (+)-BINOL 1b and upper spectrum is amine 2g with 2.0 equiv. of (+)-BINOL 1b.