Supplementary Information

Phragmalin Limonoids from *Swietenia macrophylla* and Their Antifeedant Assay against Mahogany Predator

Sônia G. S. R. Pamplona,^a Mara S. P. Arruda,^a Kelly C. F. Castro,^b Consuelo Y. Y. e Silva,^c Antonio G. Ferreira,^d Maria F. G. F. da Silva,^d Orlando S. Ohashi^e and Milton N. da Silva^{*,a}

^aLaboratório de Cromatografia Líquida, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110 Belém-PA, Brazil

^bDepartamento de Biotecnologia, Universidade Federal do Oeste Paraense, 68035-110 Santarém-PA, Brazil

^cInstituto de Ciências da Saúde, Faculdade de Farmácia, Universidade Federal do Pará, 66074-110 Belém-PA, Brazil

> ^dDepartamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos-SP, Brazil

^eDepartamento de Entomologia, Universidade Federal Rural da Amazônia, 66077-830 Belém-PA, Brazil

12α-Acetoxyl-20β,21β-22α,23α-diepoxyswietephragmin C (1)

Amorphous white solid; $[\alpha]_D^{25}$ +53.3 (*c* 0.012, CHCl₃); IR (film) v_{max} / cm⁻¹ 3389.4 (OH), 1733 (carboxyl group); ¹H NMR (400 MHz, CDCl₃), see Table S1; ¹³C NMR (75 MHz, CDCl₃), see Table S2; HR-ESI-ToF-MS at *m*/*z* 795.2846 [M + Na]⁺ (calculated for C₃₉H₄₈O₁₆Na, 795.2840).

12α -Acetoxyswietephragmin I (2)

Amorphous white solid; $[\alpha]_D^{25}$ +63.1 (*c* 0.051, CHCl₃); IR (film) v_{max} / cm⁻¹ 3456.6 (OH), 1731 (carboxyl group); ¹H NMR (400 MHz, CDCl₃), see Table S1; ¹³C NMR (75 MHz, CDCl₃), see Table S2; HR-ESI-ToF-MS at *m*/*z* 763.2581 [M + Na]⁺ (calculated for C₃₈H₄₄O₁₅Na, 763.2578).

3β -O-Detigloyl- 3β -O-benzoyl- 12α -acetoxyswietephragmin I (3)

Amorphous white solid; $[\alpha]_D^{25}$ +21.1 (*c* 0.1, CHCl₃); IR (film) v_{max} / cm⁻¹ 3398.5 (OH), 1730 (carboxyl group); ¹H NMR (400 MHz, CDCl₃), see Table S1; ¹³C NMR (75 MHz, CDCl₃), see Table S2; HR-ESI-ToF-MS at *m*/*z* 763.2581 [M + H]⁺ (calculated for C₄₀H₄₃O₁₅, 763.2602).

12α -Acetoxyl-8,9,30-*ortho*-tigloylate-swietemacrophine (4)

Amorphous white solid; $[\alpha]_D^{25}$ +27.7 (*c* 0.035, CHCl₃); IR (film) v_{max} / cm⁻¹ 3492.2 (OH), 1735 (carboxyl group); ¹H NMR (300 MHz, CDCl₃), see Table S1; ¹³C NMR (75 MHz, CDCl₃), see Table S2; HR-ESI-ToF-MS at *m*/*z* 739.2952 [M + H]⁺ (calculated for C₃₉H₄₇O₁₄, 739.2965).

^{*}e-mail: yumilton@yahoo.com.br

2-Deacetyl-6-acetoxyl-swietephragmin I (5)

Amorphous white solid; $[\alpha]_D^{25}$ +49.3 (*c* 0.314, CHCl₃); IR (KBr) v_{max} / cm⁻¹ 3575 (OH), 1730 (carboxyl group); ¹H NMR (300 MHz, CDCl₃), see Table S1; ¹³C NMR (75 MHz, CDCl₃), see Table S2; HR-ESI-ToF-MS at *m*/*z* 721.2488 [M + Na]⁺ (calculated for C₃₆H₄₂O₁₄Na, 721.2472).

2-Deacetyl-12 α -acetoxyswietephragmin I (6)

Amorphous white solid; $[\alpha]_D^{25}$ +67.6 (*c* 0.278, CHCl₃); IR (KBr) v_{max} / cm⁻¹ 3550 (OH), 1735 (carboxyl group); ¹H NMR (300 MHz, CDCl₃), see Table S1; ¹³C NMR (75 MHz, CDCl₃), see Table S2; HR-ESI-ToF-MS at *m*/*z* 721.2488 [M + Na]⁺ (calculated for C₃₆H₄₂O₁₄Na, 721.2472).

3β -O-Detigloyl- 3β -O-benzoyl-6-O-acetylswietephragmin D (7)

Amorphous white solid; $[\alpha]_D^{25}$ +41.3 (*c* 0.023, CHCl₃); IR (film) v_{max} / cm⁻¹ 3467.9 (OH), 1730 (carboxyl group); ¹H NMR (300 MHz, CDCl₃), see Table S1; ¹³C NMR (75 MHz, CDCl₃), see Table S2; HR-ESI-ToF-MS at *m*/*z* 749.2764 [M + H]⁺ (calculated for C₄₀H₄₅O₁₄, 749.2809).

6-Acetoxyl-12 α -deacetoxyl-8,9,30-*ortho*-tigloylate-swietemacrophine (8)

Amorphous white solid; $[\alpha]_D^{25}$ +37.5 (*c* 0.120, CHCl₃); IR (KBr) v_{max} / cm⁻¹ 3550 (OH), 1730 (carboxyl group); ¹H NMR (300 MHz, CDCl₃), see Table S1; ¹³C NMR (75 MHz, CDCl₃), see Table S2; HR-ESI-ToF-MS at *m*/*z* 761.2819 [M + Na]⁺ (calculated for C₃₉H₄₆O₁₄Na, 761.2785).

Н	1	2	3	4	5	6	7	8
3	4.79 s	5.32 s	5.49 s	4.83 s	4.78 s	4.81 s	5.00 s	4.80 s
5	2.34 brs	2.34 d (11.5)	2.51 d (12.1)	2.42 d (15.6)	2.80 s	2.38 d (2.1)	2.97 brs	2.23 d (2.4)
6α	3.26 d (14.4)	3.12 d (15.0)	3.20 d (16.4)	3.19 d (15.6)	5.48 s	3.17 d (15.0)	5.54 brs	5.49 s
6β	2.42 d (14.4)	2.31 d (15.0)	2.39 d (16.4)	2.39 t (15.6)	-	2.40 dd (2.1, 15.0)		-
11α	2.44 dd (13.8, 4.0)	2.28 dd (13.7, 4.0)	2.28 dd (16.8, 4.0)	2.24 dd (14.0, 4.0)	NO	2.20 dd (4.5, 13.8)	2.17 m	NO
11β	2.20 m	1.99 t (13.7)	2.03 dd (16.8, 13.9)	2.00 t (14.0)	NO	1.97 t (13.8)	NO	NO
12	5.07 dd (13.2, 4.0)	4.83 dd (13.7, 4.0)	4.90 dd (13.9, 4.0)	4.80 dd (14.0, 4.0)	NO	4.76 dd (4.5, 13.8)	1.75 m	1.28 s
15	5.97 s	6.39 s	6.13 s	6.02 s	5.95 s	6.01 s	5.75 s	5.94 s
17	5.23 s	5.87 s	6.05 s	5.82 s	5.65 s	5.81 s	5.73 s	5.65 s
Me-18	1.35 s	1.31 s	1.35 s	1.32 s	1.27 s	1.28 s	1.24 s	1.32 s
Me-19	1.50 s	1.56 s	1.49 s	1.52 s	1.33 s	1.51 s	1.31 s	1.61 s
21	5.67 d (2.7)	7.47 brs	7.52 brs	7.39 brs	7.50 t (0.7)	7.39 t (1.5)	7.51 brs	7.51 brs
22	3.58 d (1.8)	6.57 brs	6.42 d (1.7)	6.54 brs	6.46 dd (1.8, 0.7)	6.55 d (1.5)	6.43 brs	6.46 d (1.5)
23	5.51 dd (2.7, 1.8)	7.42 t (1.7)	7.44 m	7.45 brs	7.43 t (1.8)	7.44 brs	7.44 brs	7.44 dd (3.6, 1.5)
Me-28	0.81 s	0.73 s	0.83 s	0.82 s	0.98 s	0.80 s	1.07 s	0.98 s
29α	1.85 d (10.7)	1.98 d (11.5)	2.05 d (11.5)	1.97 d (13.8)	2.09 d (10.8)	1.99 d (13.8)	1.89 d (11.1)	2.10 d (11.1)
29β	1.75 d (10.7)	1.74 d (11.5)	1.80 d (11.5)	1.81 d (13.8)	1.88 d (10.8)	1.95 d (13.8)	NO	NO
30	4.55 s	5.47 s	5.45 s	4.54 s	4.49 s	4.49 s	4.52 s	4.53 s
MeCO-2	-	2.20 s	2.22 s	-	-	-	-	-
MeCO-6	-	-	-	-	2.23 s	-	2.25 s	2.23 s
MeCO-12	2.21 s	1.52 s	1.53 s	1.52 s	-	1.52 s	-	-
2'	1.92 m	1.68 s	1.67 s	-	1.67 s	1.70 s	2.19 m	-
3'	1.22 m	-	-	6.14 dq (7.0, 1.4)	-	-	1.03 d (6.6)	6.14 dd (6.9, 1.5)
4'	0.93 t (7.3)	-	-	1.68 d (7.0)	-	-	1.03 d (6.6)	1.68 d (7.2)
5'	1.02 d (7.3)	-	-	1.71 brs	-	-	-	1.72 d (1.5)
2"	-	-	7.97 dd (8.3, 1.3)	-	-	-	8.08 d (7.5)	-
3"	6.79 dq (6.9, 1.4)	6.65 dq (6.9, 1.4)	7.43 m	6.94 dq (7.0, 1.4)	6.76 qq (6.9, 1.2)	6.94 qq (6.9, 1.2)	7.43 t (7.5)	6.78 dd (7.5, 1.5)
4"	1.79 dd (6.9, 1.2)	1.69 dd (6.9, 1.2)	7.58 m	1.71 d (7.0)	1.83 t (1.2)	1.82 brs	7.59 t (7.5)	1.75 s
5"	1.82 brs	1.86 t (1.2)	7.43 m	1.83 brs	1.73 dd (6.9, 0.9)	1.72 dd (6.9, 0.9)	7.43 t (7.5)	1.84 d (0.9)
6"	-	-	7.97 m	-	-	-	8.08 d (7.5)	-
1-OH	3.88 s	3.38 s	3.43 s	NO	3.53 s	3.40 s	3.62 s	NO
2-OH	3.56 s	NO	NO	NO	3.56 s	3.57 s	3.56 s	3.49 s
OCH ₃	3.64 s	3.71 s	3.74 s	3.74 s	3.75 s	3.73 s	3.82 s	3.76 s

Table S1. ¹H NMR chemical shifts for compounds 1-8

¹H NMR spectrum was acquired in CDCl₃ at 400 MHz for 2, 4 and 7, and 300 MHz for 1 and 3 and. TMS was used as the internal standard. Chemical shifts are shown at the δ scale with J values (Hz) in parentheses.

Assignments are based on COSY, HSQC/HETCOR and HMBC experiments. NO = not observed.

 Table S2.
 ¹³C NMR chemical shifts for compounds 1-8 and models

Position	1	2	3	4	5	6	7	8	9	10	15	16
1-C	84.4	84.4	84.5	84.4	84.6	84.4	84.6	84.6	84.5	84.5	84.6	84.6
2-C	75.6	83.8	83.7	75.7	75.6	75.6	75.7	75.6	75.7	75.7	75.6	84.1
3-CH	86.7	84.7	85.6	86.5	87.4	86.8	86.9	86.9	86.4	86.6	86.9	84.7
4-C	43.8	44.7	44.8	43.7	43.5	43.7	43.7	43.5	43.9	43.8	43.7	44.8
5-CH	41.2	40.1	40.3	40.6	44.8	40.6	44.9	44.8	40.8	40.7	44.8	39.7
6-CH ₂	33.1	32.9	33.0	32.9	71.4(CH)	32.9	71.4(CH)	71.4(CH)	33.0	32.9	71.4(CH)	33.8
7-C -	175.4	174.5	174.7	174.5	171.0	174.5	171.3	171.0	174.7	174.6	171.1	173.7
8-C	83.1	83.7	83.8	83.6	83.9	83.6	83.8	83.9	83.6	83.3	83.6	83.9
9-C	86.2	85.8	85.9	86.4	87.0	86.6	87.4	87.0	87.2	86.3	86.8	86.3
10-C	47.4	48.0	48.0	47.3	48.4	47.2	48.4	48.4	47.4	47.3	48.4	48.1
11-CH ₂	31.7	32.6	32.7	32.1	26.0	32.4	25.7	25.7	32.1	32.0	25.6	26.4
12-CH	69.1	68.9	68.8	68.6	29.4(CH ₂)	68.6	29.3(CH ₂)	29.3(CH ₂)	68.6	68.6	29.3(CH ₂)	29.5(CH ₂)
13-C	43.4	42.7	42.9	42.7	37.9	42.7	38.0	37.9	42.9	42.7	37.9	37.9
14-C	151.5	149.9	150.1	151.1	152.6	151.2	151.7	152.5	151.3	151.3	152.7	151.5
15-CH	123.5	124.9	124.5	123.9	122.5	123.9	122.2	122.5	123.7	123.9	122.4	123.4
16-C	160.9	162.7	161.8	162.3	162.7	162.2	161.8	162.8	161.3	162.4	162.8	163.2
17-CH	78.0	78.2	78.1	78.1	79.8	78.2	79.7	79.8	78.0	78.2	79.8	79.8
18-CH ₃	15.7	14.2	14.0	14.6	19.9	19.8	19.5	19.9	14.3	14.5	19.7	19.5
19-CH ₃	15.4	15.4	15.4	15.5	16.3	15.4	16.4	16.3	15.5	15.5	16.4	15.5
20-C	61.0	121.4	121.6	121.2	119.5	121.2	119.6	119.5	121.4	121.3	119.6	119.6
21-CH	91.2	141.8	141.7	141.8	141.8	141.8	141.8	141.8	141.8	141.9	141.8	141.8
22-CH	51.0	110.3	110.4	110.2	110.0	110.2	110.0	110.0	110.3	110.3	110.0	110.1
23-CH	92.5	143.1	143.1	143.1	143.1	143.0	143.1	143.1	143.0	143.0	143.1	143.1
28-CH ₃	14.5	13.8	13.8	14.4	15.5	14.6	15.5	15.5	14.4	14.4	15.5	14.0
29-CH ₂	38.8	39.5	39.5	38.9	39.9	38.9	39.8	39.9	39.8	38.9	39.8	39.2
30-CH	77.7	73.9	73.8	78.1	77.9	78.1	77.7	77.8	78.2	78.1	77.8	73.9
MeCO-2	_	21.8/169.9	21.8/169.9	_	_	-	-	-	_	_	_	21.9/169.9
MeCO-6	-	_	_	-	21.0/169.8	_	19.5/169.8	21.0/169.8	_	_	21.1/169.8	_
MeCO-12	21.4/171.8	19.8/170.4	19.8/170.5	19.8/170.4	_	19.8/170.4	-	-	19.8/170.4	19.8/170.4	_	_
1'-C	122.4	119.6	119.5	124.5	119.2	119.4	122.4	124.7	122.7	122.7	122.6	119.8
2'-CH ₃	35.5(CH)	16.4	16.4	129.1(C)	16.3	16.4	28.8(CH)	129.9(C)	29.0(CH)	35.5(CH)	28.9(CH)	16.6
3'-CH	23.7(CH ₂)		_	128.7	-	_	16.7(CH ₃)	128.5	16.6(CH ₃)	23.7(CH ₂)	16.7(CH ₃)	_
4'-CH ₃	11.6	_	_	13.4	_	_	16.8	13.3	16.7	11.6	16.8	_
5'-CH ₃	13.3	_	_	11.7	-	_	_	11.7	_	13.3	_	_
1"-C	167.7	167.5	131.2	167.8	167.6	167.8	129.4	167.6	129.7	167.8	167.6	167.6
2"-C	130.2	130.8	128.9	130.1	129.9	130.0	129.7	129.9	129.8	130.0	129.9	130.7
3"-CH	139.3	135.8	128.7	139.9	139.6	139.8	129.0	139.7	129.0	139.8	139.6	136.0
4"-CH ₃	14.3	13.6	133.2(CH)	14.3	12.4	12.4	134.2(CH)	12.4	134.1(CH)	14.6^{a}	14.4	13.7
5"-CH ₃	12.5	13.0	128.7(CH)	12.4	14.3	14.3	129.0(CH)	14.4	129.0(CH)	12.4 ^a	12.3 ^a	13.0
6"-CH	-	_	128.9	-	_	_	129.7	_	129.8	_	-	_
7" - C	_	_	166.5	-	-	-	166.5	-	166.7	-	-	_
CH ₃ O	52.2	52.1	52.3	52.2	53.3	52.1	53.4	53.3	52.2	52.1	53.2	52.2

^aData obtained in this study suggest that these resonances were previously assigned incorrectly. The spectra of 1-8 were run in CDCl₃ at 75 MHz. Assignments were based on HETCOR, HSQC and HMBC experiments.

Figure S1. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound 1.

Figure S3. ¹H NMR (400 MHz, CDCl₃) spectrum of the new compound **1**.

Figure S4. ¹³C NMR (75 MHz, CDCl₃) spectrum of the new compound **1**.

Figure S5. DEPT (75 MHz, $CDCl_3$) spectrum of the new compound 1.

Figure S6. HETCOR (100 MHz, CDCl₃) spectrum of the new compound 1.

Figure S7. HETCOR (100 MHz, CDCl₃) spectrum of the new compound 1.

Figure S8. HMBC (400 MHz, CDCl₃) spectrum of the new compound 1.

Figure S9. HMBC (400 MHz, $CDCl_3$) spectrum of the new compound 1.

Figure S10. COSY (300 MHz, CDCl₃) spectrum of the new compound 1.

Figure S11. HR-ESI-ToF-MS of the new compound of 1.

Figure S12. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound **2**.

Figure S13. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound 2.

Figure S14. 1 H NMR (300 MHz, CDCl₃) spectrum of the new compound 2.

Figure S15. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound **2**.

Figure S16. ¹H NMR (400 MHz, CDCl₃) spectrum of the new compound **2**.

Figure S17. ¹³C NMR (75 MHz, CDCl₃) spectrum of the new compound 2.

Figure S18. COSY (300 MHz, CDCl₃) spectrum of the new compound 2.

Figure S19. COSY (300 MHz, $CDCl_3$) spectrum of the new compound 2.

Figure S20. HETCOR (75 MHz, CDCl₃) spectrum of the new compound 2.

Figure S21. HETCOR (75 MHz, CDCl₃) spectrum of the new compound 2.

Figure S22. HMBC (400 MHz, CDCl₃) spectrum of the new compound 2.

Figure S23. HMBC (400 MHz, CDCl₃) spectrum of the new compound 2.

Figure S24. HMBC (400 MHz, $CDCl_3$) spectrum of the new compound 2.

Figure S25. HMBC (400 MHz, CDCl₃) spectrum of the new compound 2.

Figure S26. HMBC (400 MHz, CDCl₃) spectrum of the new compound 2.

Figure S27. g-NOESY (400 MHz, CDCl₃) spectrum of the new compound 2.

Figure S28. g- NOESY (400 MHz, CDCl₃) spectrum of the new compound 2.

Figure S29. g-NOESY (400 MHz, CDCl₃) spectrum of the new compound 2.

Figure S30. g-NOESY (400 MHz, CDCl₃) spectrum of the new compound 2.

Figure S31. HR-ESI-ToF-MS spectrum of the new compound 2.

Figure S32. ¹H NMR (400 MHz, CDCl₃) spectrum of the new compound 3.

Figure S33. ¹H NMR (400 MHz, CDCl₃) spectrum of the new compound **3**.

Figure S34. 1 H NMR (400 MHz, CDCl₃) spectrum of the new compound 3.

Figure S35. ¹³C NMR (75 MHz, CDCl₃) spectrum of the new compound **3**.

Figure S36. ¹³C NMR (75 MHz, CDCl₃) spectrum of the new compound **3**.

Figure S37. ¹³C-DEPT (75 MHz, CDCl₃) spectrum of the new compound **3**.

Figure S38. COSY (300 MHz, CDCl₃) spectrum of the new compound 3.

Figure S39. COSY (300 MHz, $CDCl_3$) spectrum of the new compound 3.

Figure S40. COSY (300 MHz, CDCl₃) spectrum of the new compound 3.

Figure S41. HR-ESI-ToF-MS spectrum of the new compound 3.

Figure S42. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound 4.

Figure S43. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound 4.

Figure S44. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound 4.

Figure S45. ¹³C NMR (75 MHz, CDCl₃) spectrum of the new compound 4.

Figure S47. DEPT (75 MHz, CDCl₃) spectrum of the new compound 4.

Figure S48. HETCOR (75 MHz, CDCl₃) spectrum of the new compound 4.

Figure S49. HETCOR (75 MHz, CDCl₃) spectrum of the new compound 4.

Figure S50. HMBC (300 MHz, CDCl₃) spectrum of the new compound 4.

Figure S51. HMBC (300 MHz, CDCl₃) spectrum of the new compound 4.

Figure S52. HMBC (300 MHz, CDCl₃) spectrum of the new compound 4.

Figure S53. HMBC (300 MHz, CDCl₃) spectrum of the new compound 4.

Figure S54. HR-ESI-ToF-MS of the new compound 4.

S5

Figure S55. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound **5**.

Figure S56. ¹³C NMR (75 MHz, CDCl₃) spectrum of the new compound **5**.

S5

Figure S57. ¹³C-DEPT (75 MHz, CDCl₃) spectrum of the new compound **5**.

Figure S58. COSY (300 MHz, CDCl₃) spectrum of the new compound 5.

Figure S59. COSY (300 MHz, CDCl₃) spectrum of the new compound 5.

Figure S60. HSQC (75 MHz, CDCl₃) spectrum of the new compound 5.

Figure S61. HSQC (75 MHz, CDCl₃) spectrum of the new compound 5.

Figure S62. HSQC (75 MHz, CDCl₃) spectrum of the new compound 5.

Figure S63. HMBC (300 MHz, CDCl₃) spectrum of the new compound 5.

Figure S64. HMBC (300 MHz, CDCl₃) spectrum of the new compound 5.

Figure S65. HMBC (300 MHz, CDCl₃) spectrum of the new compound 5.

Figure S66. HMBC (300 MHz, CDCl₃) spectrum of the new compound 5.

Figure S67. HR-ESI-ToF-MS spectrum of the new compound 5.

Figure S68. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound 6.

Figure S69. 1 H NMR (300 MHz, CDCl₃) spectrum of the new compound 6.

Figure S70. ¹³C NMR (75 MHz, CDCl₃) spectrum of the new compound **6**.

Figure S71. ¹³C-DEPT (75 MHz, CDCl₃) spectrum of the new compound 6.

Figure S72. COSY (300 MHz, CDCl₃) spectrum of the new compound 6.

Figure S73. HSQC (75 MHz, $CDCl_3$) spectrum of the new compound 6.

Figure S74. HSQC (75 MHz, CDCl₃) spectrum of the new compound 6.

Figure S75. HMBC (300 MHz, $CDCl_3$) spectrum of the new compound 6.

Figure S76. HMBC (300 MHz, CDCl₃) spectrum of the new compound 6.

Figure S77. HMBC (300 MHz, CDCl₃) spectrum of the new compound 6.

Figure S78. HMBC (300 MHz, CDCl₃) spectrum of the new compound 6.

Figure S79. HR-ESI-ToF-MS spectrum of the new compound 6.

Figure S80. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound **7**.

Figure S81. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound **7**.

Figure S82. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound **7**.

Figure S83. ¹³C NMR (75 MHz, CDCl₃) spectrum of the new compound **7**.

Figure S84. ¹³C DEPT (75 MHz, CDCl₃) spectrum of the new compound **7**.

Figure S85. HSQC (75 MHz, CDCl₃) spectrum of the new compound **7**.

Figure S86. HSQC (75 MHz, CDCl₃) spectrum of the new compound 7.

Figure S87. HMBC (75 MHz, CDCl₃) spectrum of the new compound 7.

Figure S88. HMBC (75 MHz, $CDCl_3$) spectrum of the new compound 7.

Figure S89. HMBC (75 MHz, CDCl₃) spectrum of the new compound 7.

Figure S90. HMBC (75 MHz, CDCl₃) spectrum of the new compound 7.

Figure S91. HR-ESI-ToF-MS spectrum of the new compound 7.

Figure S92. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S93. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound **8**.

Figure S94. ¹H NMR (300 MHz, CDCl₃) spectrum of the new compound **8**.

Figure S95. ¹³C NMR (75 MHz, CDCl₃) spectrum of the new compound 8.

Figure S96. COSY (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S97. COSY (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S98. COSY (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S99. HETCOR (75 MHz, CDCl₃) spectrum of the new compound 8.

Figure S100. HETCOR (75 MHz, CDCl₃) spectrum of the new compound 8.

Figure S101. HETCOR (75 MHz, CDCl₃) spectrum of the new compound 8.

Figure S102. HETCOR (75 MHz, CDCl₃) spectrum of the new compound 8.

Figure S103. HMBC (300 MHz, $CDCl_3$) spectrum of the new compound 8.

Figure S104. HMBC (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S105. HMBC (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S106. HMBC (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S107. HMBC (300 MHz, CDCl₃) spectrum of the new compound **8**.

Figure S108. HMBC (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S109. HMBC (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S110. NOE-diff (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S111. NOE-diff (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S112. NOE-diff (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S113. NOE-diff (300 MHz, $CDCl_3$) spectrum of the new compound 8.

Figure S114. NOE-diff (300 MHz, CDCl₃) spectrum of the new compound 8.

Figure S115. HR-ESI-ToF-MS spectrum of the new compound 8.