Supplementary Information

Photophysical and Photochemical Properties and Aggregation Behavior of Phthalocyanine and Naphthalocyanine Derivatives

Thalita F. M. de Souza, Felipe C. T. Antonio, Mateus Zanotto, Paula Homem-de-Mello and Anderson O. Ribeiro*

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Bloco B, 09210-170 Santo André-SP, Brazil

	λ^a / nm	Oscillator strength	Molecular orbital (MO)
ZnPc	674	0.4641	HOMO \rightarrow LUMO; HOMO \rightarrow LUMO+1
	425	0.0096	HOMO-1 \rightarrow LUMO; HOMO-1 \rightarrow LUMO+1
1	687	0.5369	HOMO \rightarrow LUMO; HOMO \rightarrow LUMO+1
	437	0.0269	HOMO-1 \rightarrow LUMO; HOMO-1 \rightarrow LUMO+1
ZnNc	770	0.6578	HOMO \rightarrow LUMO; HOMO \rightarrow LUMO+1
	489	0.0167	HOMO \rightarrow LUMO+3; HOMO \rightarrow LUMO+4
	465	0.2673	HOMO-1 \rightarrow LUMO; HOMO-1 \rightarrow LUMO+1
2	789	0.7024	HOMO \rightarrow LUMO; HOMO \rightarrow LUMO+1
	489	0.0092	$HOMO \rightarrow LUMO+4$
	485	0.0060	$HOMO \rightarrow LUMO+5$
	477	0.0422	HOMO-2 \rightarrow LUMO; HOMO-1 \rightarrow LUMO
	471	0.2010	HOMO-1 \rightarrow LUMO+1
	470	0.2334	$HOMO-1 \rightarrow LUMO$

Table S1. Electronic absorption spectra data as obtained with TD-DFT in DMSO (IEFPCM)

^aWavelength fitted to experimental data by a factor of 16% for ZnPc and **1** and 10% ZnNc (calculated from the difference between calculated and experimental Q-band). Fit parameters are different because DFT predicts better gap energy as larger is the conjugated system.

Figure S1. Frontier molecular orbitals for 1 and 2.

Table S2. Electronic absorption spectra data (wavelength (λ) and oscillator strength (*f*)) for Q-band of each compound as obtained with TD-DFT using different solvents (simulated with IEFPCM, values in parenthesis correspond to the dielectric constant)

	Toluene (2.4)		DCM (8.9)		DMF (37.2)		DMSO (46.8)		CHCl ₃ (47.1)	
	λ^a / nm	f	λ^a / nm	f						
ZnPc	674.0346	0.4649	674.0346	0.4649	674.0855	0.4638	674.0776	0.4640	674.0346	0.4649
1	686.6262	0.5378	686.6262	0.5378	686.5937	0.5367	686.6018	0.5369	686.6262	0.5378
ZnNc	770.2865	0.6584	770.2865	0.6584	770.1463	0.6577	770.1733	0.6578	770.2865	0.6584
2	789.5039	0.7027	789.5039	0.7027	789.1641	0.7023	789.2320	0.7024	789.5039	0.7027

^aWavelength fitted to experimental data by a factor of 16% for ZnPc and **1** and 10% ZnNc (calculated from the difference between calculated and experimental Q-band). Fit parameters are different because DFT predicts better gap energy as larger is the conjugated system. DCM: dichloromethane; DMF: dimethylformamide; DMSO: dimethyl sulfoxide.

Figure S2. Electrostatic potential surface mapped obtained for (a) ZnPc and (b) ZnNc (values in atoms units).

Figure S3. Aggregate conformations found for ZnPc and ZnNc, top view (left) and side view (right).

ZnPc

Table S3. Electronic absorption spectra data as obtained with TD-DFT calculations for dimeric species (in DMSO, as simulated with IEFPCM)

	λ^a / nm	Oscillator strength	Molecular orbital (MO)
	670	0.4445	HOMO-1 \rightarrow LUMO+2; HOMO \rightarrow LUMO+1
ZnPc 0°	668	0.4206	HOMO-1 \rightarrow LUMO; HOMO \rightarrow LUMO+3
	636	0.0402	HOMO-3 \rightarrow LUMO+1
$7nDc 45^{\circ}$	660	0.4358	HOMO-1 \rightarrow LUMO+1; HOMO-1 \rightarrow LUMO
ZIIFC 45	657	0.0156	$HOMO-2 \rightarrow LUMO$
	758	0.5610	HOMO \rightarrow LUMO+3; HOMO-1 \rightarrow LUMO
ZnNc 0°	756	0.6065	HOMO-1 \rightarrow LUMO+1; HOMO \rightarrow LUMO+1
	686	0.2015	$HOMO-2 \rightarrow LUMO$
ZnNc 45°	744	0.8628	HOMO-1 \rightarrow LUMO; HOMO-1 \rightarrow LUMO+1

^aWavelength fitted to experimental data by a factor of 16% for ZnPc and **1** and 10% ZnNc (calculated from the difference between calculated and experimental Q-band). Fit parameters are different because DFT predicts better gap energy as larger is the conjugated system.

Figure S4. Molecular orbitals ((a) top view, (b) side view) involved in the main transitions of dimer 0° of ZnPc.

LUMO+1

HOMO-1

Figure S6. Molecular orbitals involved in the main transitions of dimer 0° of ZnNc.

Figure S7. Molecular orbitals involved in the main transitions of dimer 45° of ZnPc.