
Article J. Braz. Chem. Soc., Vol. 29, No. 3, 472-481, 2018.
Printed in Brazil - ©2018  Sociedade Brasileira de Química

http://dx.doi.org/10.21577/0103-5053.20170159

*e-mail: kassiolima@gmail.com

Principal Component Analysis with Linear and Quadratic Discriminant Analysis 
for Identification of Cancer Samples Based on Mass Spectrometry

Camilo L. M. Morais and Kássio M. G. Lima*

Química Biológica e Quimiometria, Instituto de Química,  
Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil

Mass spectrometry (MS) is a powerful technique that can provide the biochemical signature of a 
wide range of biological materials such as cells and biofluids. However, MS data usually has a large 
range of variables which may lead to difficulties in discriminatory analysis and may require high 
computational cost. In this paper, principal component analysis with linear discriminant analysis 
(PCA-LDA) and quadratic discriminant analysis (PCA-QDA) were applied for discrimination 
between healthy control and cancer samples (ovarian and prostate cancer) based on MS data sets. 
In addition, an identification of prostate cancer subtypes was performed. The results obtained 
herein were very satisfactory, especially for PCA-QDA. Selectivity and specificity were found in 
a range of 90-100%, being equal or superior to support vector machines (SVM)-based algorithms. 
These techniques provided reliable identification of cancer samples which may lead to fast and 
less-invasive clinical procedures.
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Introduction

Mass spectrometry (MS) is an analytical technique 
that is used for determining the chemical composition 
of a given sample, to quantify compounds,1 and to help 
elucidate molecular structures.2,3 This technique has been 
increasingly utilized in biomedical and clinical research,4 
since it can overcome many limitations of classical 
immunoassays5,6 and supports the development of fast and 
less-invasive clinical procedures.7-9

MS is usually coupled with chromatography such as 
liquid chromatography (LC-MS) and gas chromatography 
(GC‑MS). Other techniques such as surface-enhanced laser 
desorption ionization time-of-flight (SELDI-TOF) and 
matrix-assisted laser desorption ionization time-of-flight 
(MALDI-TOF) are often used in MS applications, including 
disease screening and diagnosis.5 Some examples of MS 
applications includes toxicology screening and toxic drug 
quantification using quadrupole MS/MS;10 identification of 
inborn errors in metabolism or genetic defects in newborns 
for prenatal screening programs using electrospray 
tandem MS;11 detection of drug-induced hepatotoxicity 
using MS-based metabolomics;12 and identification and 
quantification of bleomycin in serum and tumor tissue by 

high resolution LC-MS.13 MS-based techniques have been 
largely employed for cancer identification, such as for 
breast cancer,14 prostate cancer,15,16 ovarian cancer,17 lung 
cancer,18 and pancreatic cancer;19 as well as for identifying 
many biomarkers.18,20-24

One of the main fields using MS data is metabolomics, 
which aims to identify and quantify small molecules 
involved in metabolic reactions.25 Metabolomics studies 
have been applied in several areas, especially cancer.26 
These analyses are typically performed in either targeted 
or untargeted approaches.25 The target approach aims to 
identify and quantify specific metabolites or metabolite 
class; whereas in the untargeted analysis a new hypothesis 
for further tests is generated by measuring all the 
metabolites in a biological system.25 To make this possible, 
multivariate statistical analysis is commonly employed 
in metabolomics studies by means of unsupervised or 
supervised classification techniques.25

Various types of chemometric algorithms have been 
reported for pattern recognition and classification of MS 
data, especially for discriminating between healthy control 
and cancer samples, or discriminating cancer subtypes. 
For instance, there are several papers reporting the use of 
partial least squares discriminant analysis (PLS-DA),14,18,20 
hierarchical cluster analysis (HCA),14,27,28 principal 
component analysis (PCA),14,29 support vector machines 
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(SVM),17,29 artificial neural networks (ANN),28 principal-
component analysis followed by linear discriminant 
analysis (PCA-LDA),15 principal component directed 
partial least squares (PC-PLS),30 and backward variable 
elimination partial least squares discriminant analysis 
(BVE-PLSDA).31

Principal component analysis (PCA) is a method of 
exploratory analysis capable of reducing the original data 
into a few variables.32 PCA reduces the data into a few 
principal components (PCs), where each one represents 
a piece of the original information. The first PC has the 
largest explained variance; therefore, they represent most 
of the information present in the original data. Using 
PCA, for instance, it is possible to reduce a large MS data 
set of thousands of variables into a few PCs representing 
the majority of the original information in just a few 
seconds. The PCA scores can be used as discriminant 
variables in conjunction with supervised classification 
techniques, such as linear discriminant analysis (LDA) 
and quadratic discriminant analysis (QDA). LDA is 
one of the most common algorithms used in supervised 
classification of 1st  order spectral data, especially for 
spectroscopy applications in discriminatory analysis of 
cancer samples.33 On the other hand, there are only a few 
applications of QDA algorithm for discriminatory analysis 
reported in literature, and even fewer for QDA coupled to 
other chemometric techniques.33 QDA is a very simple 
algorithm, and differently from LDA, it computes the 
variance structures for each class separately,34 creating a 
more powerful discrimination rule for classes with different 
covariance matrices, such as for biological spectra sets in 
which the variability within classes is a key issue.

LDA has been reported in many MS applications, 
including analysis of N-glycans of human serum α1-acid 
glycoprotein (AGP) in cancer and healthy individuals;35 
differentiation of vegetable oils;36 ovarian cancer detection 
based on proteomics;37 estimating false discovery rate 
(FDR) in phosphopeptide identifications;38 discrimination 
of ionic liquid types (ILs);39 and gasoline classification.40 
QDA applications are fewer, and include characterization 
of ILs;39 identification of ovarian cancer;41 and gasoline 
classification.40

In this paper, principal component analysis followed 
by linear discriminant analysis (PCA-LDA) and quadratic 
discriminant analysis (PCA-QDA) were compared for 
discrimination between healthy controls and cancer 
(ovarian and prostate) samples. In addition, a further 
classification between benign subtypes of prostate cancer 
(serum PSA (prostate-specific antigen) 4-10 ng mL-1 and 
serum PSA > 10 ng mL-1) was performed. These algorithms 
take advantage of the power of MS-based techniques for 

clinical analysis and provide a simple, fast, and reliable 
way to identify cancer samples.

Experimental

Samples

Data set 1: ovarian cancer
This data set is public available by Guan et al.17 It is 

composed of LC/TOF-MS mass spectra (positive mode) 
from 35 healthy control (H.C.) and 37 ovarian cancer (O.C.) 
samples based on serum metabolomics. Retention time was 
not considered as a factor for chemometric modeling, thus 
the entire mass spectra (m/z values varying from 134.9919 
to 1.4879 × 103, having 360 variables) was integrated into 
an interval of retention time of 0-180 min. The control 
population consisted of patients with histology considered 
within normal limits and women with non-cancerous 
ovarian conditions; and the ovarian cancer samples were 
composed of patients with papillary serous ovarian cancer 
(stage I-IV). More details about the sample acquisition can 
be found in Guan et al.17

Data set 2: prostate cancer
This data set is public available by Petricoin III et al.16 

It is composed of SELDI-TOF mass spectra from 63 healthy 
control (H.C.) and 69 prostate cancer (P.C.) samples 
based on serum proteomics. The m/z values varied from 
0 to 1.9996 × 104, having 15,153 variables. The control 
population was composed of men with no previous history 
of prostate cancer and serum PSA < 1 ng mL-1. The prostate 
cancer samples were acquired from patients with serum 
PSA ≥ 4 ng mL-1, digital rectal exam (DRE) evidence and 
single sextant biopsy evidence of prostate cancer (Gleason 
scores 4-9). More details about the sample acquisition can 
be found in Petricoin III et al.16

Data set 3: subtypes of prostate cancer
This data set was also obtained from Petricoin III et al.16 

It is composed of SELDI-TOF mass spectra from 26 prostate 
cancer samples with PSA 4-10 ng mL-1 (low grade) and 43 
prostate cancer samples with PSA  >  10  ng  mL-1 (high 
grade). These data are derived from data set 2 (m/z values 
varying from 0 to 1.9996 × 104, having 15,153 variables) 
and more details about the sample acquisition can be found 
in Petricoin III et al.16

Computational analysis

The data treatment and chemometric analysis 
were performed using MATLAB® software R2012b42 
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(MathWorks, USA) with PLS Toolbox 7.9.3 (Eigenvector 
Research, Inc., USA). All data sets were normalized 
by Euclidian norm and baseline corrected using 
automatic Whittaker filter (λ = 100, p = 0.001).43 Data 
sets 2 and 3 were mass drift corrected by using the 
icoshift algorithm44,45 in the m/z range of 3000-10000. 
Mean-centering scaling was applied to the data before 
chemometric modelling.

The samples for each data set were divided into training 
(ca. 70%), validation (ca. 15%) and prediction (ca. 15%) 
sets by using the Kennard-Stone uniform sample selection 
algorithm.46 Table 1 summarizes the number of samples for 
training, validation and prediction in each data set.

The chemometric models of PCA-LDA and PCA-QDA 
were built by firstly performing a principal component 
analysis (PCA),32 and then the A firstly scores selected were 
utilized as classification variables in a linear discriminant 
analysis (LDA) and quadratic discriminant analysis (QDA) 
model. The LDA classification score (Lik) and the QDA 
classification score (Qik) are calculated for a given class k 
by the following equations:47,48

	 (1)

	 (2)

where xi is the vector containing the classification variables 
for sample i;  is the mean vector of class k; Σpooled is the 
pooled covariance matrix; and πk is the prior probability of 
class k. The pooled covariance matrix Σpooled and the prior 
probability πk are calculated as follows:47,48

	 (3)

	 (4)

where n is the total number of objects in the training set; 
K is the number of classes; nk is the number of objects of 
class k; and Σk is the variance-covariance matrix of class k, 
estimated by:48

	 (5)

The LDA and QDA classification scores (equations 1 
and  2, respectively) were calculated based on the 
Mahalanobis distance modified by the fraction of samples 
in each class. In that case, they do not depend of scale, thus 
being dimensionless. These scores were used to calculate 
the discriminant function (DF) between the two classes 
as follows:48

DFLDA = Li1 – Li2	 (6)
DFQDA = Qi1 – Qi2	 (7)

where Qi1 and Qi2 are the quadratic classification scores for 
classes 1 and 2, respectively.

If the DF result is positive for a given sample, the sample 
is closer to class 2, therefore it is classified as class 2; and 
if the DF result is negative for a given sample, the sample 
is closer to class 1, therefore being classified as class 1. In 
this sense, on the DF plot the class 2 is constituted of all 
positive values; whereas class 1 is constituted of all negative 
values. A flowchart illustrating the MS data processing is 
shown in Figure 1.

Although both LDA and QDA are based on a 
Mahalanobis distance calculation, the QDA algorithm 
forms a separated variance model for each class, not 
assuming that classes have similar variance-covariance 
matrices as LDA does.34 Therefore, QDA is more suitable to 
build classification models of data having different variance 
structures, such as what happens in many biological data 
sets.

Table 1. Number of samples in the training, validation and prediction 
sets for each data set

Training Validation Prediction

Data set 1 50 10 12

Data set 2 92 19 21

Data set 3 48 10 11

Figure 1. Flowchart illustrating MS data processing.
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Quality performance

The performances of the employed algorithms were 
evaluated according to the following quality metrics: 
accuracy, sensitivity, specificity, positive and negative 
predictive value, Youden’s index, and positive and negative 
likelihood ratios. Accuracy is related to the percentage of 
correct classification;49 sensitivity (SENS) is the confidence 
that a positive result for a sample of the labeled class 
is obtained; specificity (SPEC) is the confidence that 
a negative result for a sample of the non-labeled class 
is obtained; positive predictive value (PPV) measures 
the proportion of positives that are correctly assigned; 
negative predictive value (NPV) measures the proportion 
of negatives that are correctly assigned; Youden’s index 
(YOU) evaluates the classifier’s ability to avoid failure; 
positive likelihood ratio (LR+) is the ratio between the 
probability of predicting an example as positive when it is 
truly positive and the probability of predicting an example 
as positive when it is not positive; and negative likelihood 
ratio (LR–) is the ratio between the probability of predicting 
an example as negative when it is actually positive and the 
probability of predicting an example as negative when it is 
truly negative.33 The equations of these quality parameters 
are shown in Table 2.

Results and Discussion

Data set 1: ovarian cancer

Ovarian cancer encompasses a heterogeneous group of 
tumors having differences in epidemiological and genetic 
risk factors, precursor lesions, spread patterns, molecular 
events during oncogenesis, response to chemotherapy and 
prognosis. Most ovarian cancers (90%) are malignant 
epithelial tumors named carcinomas, and the remaining 

are germ cells and sex cord-stromal tumors.50 This type of 
cancer is the leading cause of death from gynecological 
malignances, and its mortality is a consequence of late 
presentation and diagnosis at stages III or IV, resulting 
in five-year survival rates of 20 and 6%, respectively.33 A 
study using serum metabolomics by MS-based techniques 
could lead to a faster and more robust classification 
of cancer and non-cancer patients. In this data set, the 
baseline corrected LC/TOF-MS mass spectra of healthy 
control (H.C.) and ovarian cancer (O.C.) samples are 
shown in Figure 2a. As can be seen, the signals are very 
superposed and no visual differentiation between H.C. 
and O.C. can be made.

Figure 2. (a) Baseline corrected mass spectra for healthy control (H.C.) and ovarian cancer (O.C.) samples; (b) PCA scores on PC1 versus scores on PC2 
for healthy control (H.C.) and ovarian cancer (O.C.) samples, where the percentage of total variance described by each PC is described inside parenthesis. 
The circled blue line is the confidence ellipse of 95%.

Table 2. Quality parameters

Parameter Equation

Accuracy / %  

Sensitivity / %
 

Specificity / %
 

Positive predictive value / %
 

Negative predictive value / %
 

Youden’s index / %  

Positive likelihood ratio
 

Negative likelihood ratio
 

y = total number of samples incorrectly classified for a set of N samples; 
TP: true positive; TN: true negative; FP: false positive; FN: false negative; 
SENS: sensitivty; SPEC: specificity.
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Using PCA for exploratory analysis of this data set, the 
scores plot on the 1st and 2nd PCs is depicted in Figure 2b. 
Although PCA technique could be used as a classification 
tool, the lack of discrimination pattern in this scores 
plot leads to the use of supervised discriminant analysis. 
PCA‑LDA and PCA-QDA were applied to the 10 first PCs 
(cumulative explained variance of 86.33%) and its DF plots 
are shown in Figures 3a and 3b, respectively. These figures 
show a better discriminant pattern for differentiating H.C. 
and O.C. samples.

The PCA-QDA DF plot also suggests a difference in 
variance structures between the classes, where the ovarian 
cancer sample set has a higher covariance matrix since this 
class has higher DF values than the other. This is probably 
caused by the high complexity of ovarian cancer disease 
as mentioned earlier. The quality performance parameters 
found for these chemometric models are shown in Table 3.

As shown in Table 3, the best quality parameters 
were obtained for PCA-QDA (accuracy in prediction 
set = 91.67%). On the other hand, PCA-LDA only achieved 
accuracy of 58.33% in prediction and 30% in the validation 
set. The low accuracy in the validation set suggests that the 
model is not well fitted, reflecting its poor prediction ability. 
PCA-QDA probably had superior performance because the 
classes’ variance structures are very different due to the 
high composition variability of the ovarian cancer samples, 
which increases the power of QDA compared to LDA. The 
accuracy in prediction set of PCA-QDA is close to what was 
obtained in literature using SVM, a more robust algorithm.17 
Sensitivity and specificity were also equal to 91.67%, being 
superior to the results achieved by linear and non-linear 
SVM classifiers applied to this data set (sensitivity = 78.4 
and 83.8%, respectively; and specificity = 74.3 and 77.1%, 
respectively).17 In addition, the classification results using 
PCA-QDA were superior than those ones found by applying 
PCA-SVM using a radial bases function (RBF) kernel to 

this data set. PCA-SVM shown accuracy, sensitivity and 
specificity all equal to 75%, therefore being an algorithm 
with intermediary performance between PCA-LDA and 
PCA-QDA to classify H.C. and O.C. samples. Moreover, 
the high value of LR+ and the low value of LR– prove that 
PCA-QDA is superior for identifying cancer, since these 
parameters are directly related to the clinical concept of 
“ruling-OUT” and “ruling-IN” disease, respectively.33

From 360 variables present in this MS data set, only 
31 were found to be statistical significant between the 
two classes (p < 0.05) (see Figure S7 in Supplementary 
Information (SI)). Among these variables, seven presented 
mean intensity variations (∆I) higher than 1%. These 

Figure 3. DF plot for (a) PCA-LDA and (b) PCA-QDA models for discriminating healthy control (H.C.) and ovarian cancer (O.C.) samples. The DF scale 
for the QDA-based models were zoomed to improve visualization.

Table 3. Quality performance parameters found for PCA-LDA and 
PCA-QDA models for discriminating healthy control and ovarian cancer 
samples.

Parameter
Model

PCA-LDA PCA-QDA

Accuracy

Training set / % 70.00 84.00

Validation set / % 30.00 70.00

Prediction set / % 58.33 91.67

Sensitivity / % 58.33 91.67

Specificity / % 58.33 91.67

PPV / % 58.33 91.67

NPV / % 58.33 91.67

YOU / % 16.67 83.33

LR+ 1.40 11.00

LR– 0.71 0.09

PCA-LDA: principal component analysis with linear discriminant 
analysis; PCA-QDA: principal component analysis with quadratic 
discriminant analysis; PPV: positive predictive value; NPV: negative 
predictive value; YOU: Youden’s index; LR+: positive likelihood ratio; 
LR–: negative likelihood ratio.
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m/z values were 279.1263 (∆I = –14.71%), 496.3121 
(∆I  =  6.97%), 496.3139 (∆I = 8.99%), 520.3164 
(∆I  =  4.98%), 520.3169 (∆I = 4.59%), 524.3463 
(∆I = 4.33%) and 991.6178 (3.75%). The negative signal 
implies that the peak is more intense in O.C. class, while 
the positive signal implies that the peak is more intense 
in H.C. class. The m/z values of 496.3121, 496.3139, 
520.3164, 520.3169 and 524.3463 are associated with 
types of lysophosphatidylcholine (LysoPC),51 a metabolite 
identified in plasma that is directly related to the presence 
of ovarian cancer.52 The other m/z values have not been 
reported or associated with any cancer metabolite according 
to the Human Metabolome Database (HMDB).51

Data set 2: prostate cancer

Prostate cancer is the most commonly diagnosed male 
malignant cancer in the world. It has an incidence rate of 
214 cases per 100,000, and a mortality rate from metastatic 
disease of 30 in 100,000.53 Prostate tissue is structurally 

complex, being primarily constituted of glandular ducts lined 
by epithelial cells and supported by heterogeneous stroma. 
Its identification is very invasive and analyst-dependent, 
being subject to intra- and inter-observer errors.54 A study 
using serum proteomics by MS-based techniques could lead 
to a faster and more robust classification of cancer and non-
cancer patients. In this data set, SELDI-TOF mass spectra 
of healthy control (H.C.) and prostate cancer (P.C.) samples 
were utilized. Figure 4a shows the baseline corrected mass 
spectra for these two classes. The signal complexity present 
in Figure 4a shows how difficult it is to differentiate one 
class from another, therefore requiring pattern recognition 
algorithms. Initially, PCA was utilized as exploratory 
analysis, and its scores plot is shown in Figure 4b.

No clear discriminant pattern is observed in the PCA 
scores graph. On the other hand, the results improved 
significantly by applying LDA and QDA to the PCA scores. 
PCA-LDA and PCA-QDA DF plots are shown in Figures 5a 
and 5b, respectively. 10 PCs were utilized (cumulative 
explained variance of 81.11%) for classification.

Figure 4. (a) Baseline corrected mass spectra for healthy control (H.C.) and prostate cancer (P.C.) samples; (b) PCA scores on PC1 versus scores on PC2 
for healthy control (H.C.) and prostate cancer (P.C.) samples, where the percentage of total variance described by each PC is described inside parenthesis. 
The circled blue line is the confidence ellipse of 95%.

Figure 5. DF plot for (a) PCA-LDA and (b) PCA-QDA models for discriminating healthy control (H.C.) and prostate cancer (P.C.) samples. The DF scale 
for the QDA-based models were zoomed to improve visualization.
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Figure 5 shows a clear separation between the two 
classes using both PCA-LDA and PCA-QDA, where 
PCA‑QDA had a slightly better classification. As seen in 
the DF plot of PCA-QDA, the healthy control samples have 
a higher variance structure than prostate cancer samples. 
This variability within this biological class may be related 
to different habits and lifestyles of the patients.53 The 
quality performance parameters found for PCA-LDA and 
PCA-QDA models are shown in Table 4.

Table 4 shows the notable performance of the tested 
algorithms. PCA-LDA and PCA-QDA had accuracy in the 
prediction set of 100%, being 5% above the value found in 
literature for prostate cancer detection based on this data set.16 
The LR+ values equal to infinite are a consequence of LR+ 
equation shown in Table 2, because when the specificity is 
close to 100%, this parameter tends to infinite. The sensitivity 
and specificity of PCA-LDA and PCA-QDA were equal to 
100%, being above the values found using a bioinformatics 
algorithm based on cluster analysis of topological feature 
maps (sensitivity = 95%, specificity = 71%).16 Using 
PCA-SVM with RBF kernel, an accuracy, sensitivity 
and specificity of 100% were also found. However, the 
complexity degree employed during SVM is much higher 
than LDA and QDA, meaning that with simpler algorithms 
the same classification performance can be obtained.

From a total of 15,153 variables in the original data, 
5,583 were found to be statistical significant between the two 
classes (p < 0.05) (see Figure S8 in SI). The larger number 
of variables as well as the untargeted procedure and the 

complexity of this proteomic data make nearly impossible to 
identify important molecules based on these 5,583 variables.

The use of PCA-LDA and PCA-QDA in this data 
set of serum proteomics provides a reliable, non-analyst 
dependent and less-invasive differentiation between 
patients with no evidence of prostate cancer and patients 
with prostate cancer. This can be a powerful tool for clinical 
screening, avoiding patients to suffer unnecessary surgical 
procedures, for instance.

Data set 3: subtypes of prostate cancer

This data set is derived from data set 2, where the 
cancer samples were divided into two classes: class 1 
having cancer samples with serum PSA 4-10 ng mL1 
(low grade); and class 2 having cancer samples with serum 
PSA > 10 ng mL-1 (high grade). This data set was created to 
evaluate the power of the algorithms to differentiate cancer 
samples according to its stage. Although PSA is not a final 
indicator of prostate cancer, it is important to differentiate 
low and high PSA levels, since the PSA indicates during 
clinical screening if a patient will need a more robust/
invasive exam or not. Usually, patients with low PSA levels 
but with suspicion of prostate cancer undergo an additional 
DRE exam. However, it is recommended that patients 
with high PSA levels undergo additional DRE tests, such 
as transrectal ultrasound and cystoscopy.55,56 The baseline 
corrected mass spectra of the low grade and high grade 
cancer samples are shown in Figure 6a.

Figure 6b shows the PCA scores for low and high grade 
samples, where no discriminant profile is seen. By applying 
PCA-LDA and PCA-QDA to the data (10 PCs, cumulative 
explained variance of 86.29%), the differentiation 
between the two classes improves significantly, as shown 
in Figures  7a and 7b, respectively. An almost perfect 
separation between the two classes is obtained in the 
PCA‑QDA DF plot.

The coefficients in the PCA-QDA DF plots show that 
the variances of the low and high grade classes are similar 
to each other, with a bit higher covariance matrix for the 
high grade samples. Table 5 shows the quality parameters 
found by the chemometric models applied to this data set.

For classification purposes, the PCA-LDA and 
PCA-QDA models had very similar performances, with 
sensitivity and specificity of 100% each. The training ability 
of PCA-QDA was better than PCA-LDA, but the algorithm 
had worst performance in the validation set. The poorer 
classification in the training and validation set for both 
algorithms when compared to the prediction set is a possible 
result of the reduced number of samples. Nevertheless, 
the maximum results obtained in the prediction set with 

Table 4. Quality performance parameters found for PCA-LDA and 
PCA-QDA models for discriminating healthy control and prostate cancer 
samples

Parameter
Model

PCA-LDA PCA-QDA

Accuracy

Training set / % 95.65 96.74

Validation set / % 100 100

Prediction set / % 100 100

Sensitivity / % 100 100

Specificity / % 100 100

PPV / % 100 100

NPV / % 100 100

YOU / % 100 100

LR+ Inf Inf

LR– 0 0

PCA-LDA: principal component analysis with linear discriminant 
analysis; PCA-QDA: principal component analysis with quadratic 
discriminant analysis; PPV: positive predictive value; NPV: negative 
predictive value; YOU: Youden’s index; LR+: positive likelihood ratio; 
LR–: negative likelihood ratio; Inf: infinite.
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PCA-LDA and PCA-QDA provided good quality metrics, 
showing the ability of both algorithms to differentiate stages 
of prostate cancer based on its PSA level.

From a total of 15,153 variables present in the original 
data, 2,765 were found to be statistical significant (p < 0.05) 
(see Figure S9 in SI). As occurred in data set 2, the 
larger number of variables combined with the untargeted 
procedure and the complexity of this proteomic data inhibit 
the identification of important molecules based on these 
2,765 variables.

 The performance of PCA-LDA and PCA-QDA 
algorithms were equal to PCA-SVM using RBF kernel 
(accuracy, sensitivity and specificity of 100%), showing 
the capability of PCA-LDA and PCA-QDA to properly 
classify this data set.

Conclusions

The use of PCA-LDA and PCA-QDA provided 
very satisfactory classification models for MS data, as 

Figure 6. (a) Baseline corrected mass spectra for low grade prostate cancer and high grade prostate cancer samples; (b) PCA scores on PC1 versus scores 
on PC2 for low grade and high grade prostate cancer samples, where the percentage of total variance described by each PC is described inside parenthesis. 
The circled blue line is the confidence ellipse of 95%.

Figure 7. DF plot for (a) PCA-LDA and (b) PCA-QDA models for discriminating low grade and high grade prostate cancer samples. The DF scale for the 
QDA-based models were zoomed to improve visualization.

Table 5. Quality performance parameters found for PCA-LDA and 
PCA-QDA models for discriminating low and high grade prostate cancer 
samples

Parameter
Model

PCA-LDA PCA-QDA

Accuracy

Training set / % 87.50 97.92

Validation set / % 90.00 80.00

Prediction set / % 100 100

Sensitivity / % 100 100

Specificity / % 100 100

PPV / % 100 100

NPV / % 100 100

YOU / % 100 100

LR+ Inf Inf

LR– 0 0 

PCA-LDA: principal component analysis with linear discriminant 
analysis; PCA-QDA: principal component analysis with quadratic 
discriminant analysis; PPV: positive predictive value; NPV: negative 
predictive value; YOU: Youden’s index; LR+: positive likelihood ratio; 
LR–: negative likelihood ratio; Inf: infinite.
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demonstrated for MS-based serum metabolomics in the 
detection of ovarian cancer; and also MS-based serum 
proteomics for the detection of prostate cancer and its 
subtypes according to the PSA level. The LDA and 
QDA‑based algorithms are very simple compared to many 
other algorithms utilized in literature, such as SVM, and 
can also provide very solid classification results; especially 
PCA-QDA, which models the data considering different 
variance structures between the classes. Apart from the very 
satisfactory classification results found for the tested data 
sets (sensitivity and specificity > 90%), these algorithms 
also significantly reduce the data, which considerably 
speeds up the computational analysis, enabling a supervised 
classification of an MS data set of thousands of variables 
in less than one minute, for example. The speed and solid 
classification results found by these algorithms for the 
tested applications show that they combine very well with 
the power of MS-based techniques, thus being capable to 
be utilized in other types of applications in the future. The 
combination of MS-based serum analysis and these types 
of chemometric techniques can provide very acceptable 
findings for developing fast, very accurate, less-invasive, 
and non-analysis dependent clinical procedures, especially 
for screening purposes.
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