Supplementary Information

Natural Organic Acid as Green Catalyst for Xanthenones Synthesis: Methodology, Mechanism and Calcium Channel Blocking Activity

Bruna S. Terra,^a Aura M. B. Osorio,^a Aline de Oliveira,^a Rebeca P. M. Santos,^b Andressa P. Mouro,^b Natália F. de Araújo,^b Cameron C. da Silva,^c Felipe T. Martins,^c Luciene B. Vieira,^b Daniella Bonaventura,^b Heitor A. de Abreu,^a Antonio F. C. Alcântara^a and Ângelo de Fátima^{*,a}

^aDepartamento de Química and ^bDepartamento de Farmacologia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte-MG, Brazil

> ^cInstituto de Química, Universidade Federal de Goiás, Campus Samambaia, CP 131, 74001-970 Goiânia-GO, Brazil

9,9-Dimethyl-12-phenyl-9,10-dihydro-8*H*-benzo[*a*]xanthen-11(12*H*)-one (4a)

mp 158-159 °C [Lit.¹ 155-156 °C]; IR (ATR) v / cm⁻¹ 2967, 1651, 1621, 1501, 1479, 1452, 1373, 1218, 1191, 1144, 1027, 933, 870, 837, 744; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, 1H, *J* 8.0 Hz), 7.67-7.64 (m, 2H), 7.35-7.30 (m, 3H), 7.28-7.23 (m, 2H), 7.12 (t, 2H, *J* 8.0 Hz), 6.98 (t, 1H, *J* 8.0 Hz), 5.70 (s, 1H), 2.44 (s, 2H), 2.21 (d, 2H, *J* 16.0 Hz), 2.15 (d, 2H, *J* 16.0 Hz), 1.00 (s, 3H), 0.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 164.3, 148.2, 145.3, 132.0, 131.9, 129.3, 128.9, 128.7, 127.5, 126.7, 125.3, 124.1, 118.2, 117.5, 114.7, 51.3, 41.8, 35.2, 32.6, 29.8, 27.5; HRMS (ESI) *m*/z C₂₅H₂₂O₂ [M + Na]⁺ observed: 377.1425; C₂₅H₂₂O₂ [M + Na]⁺ requires: 377.1518.

9,9-Dimethyl-12-(4-nitrophenyl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4b)

mp 172-174 °C; [Lit.² 177-179 °C]; IR (ATR) v / cm⁻¹ 2913, 1650, 1594, 1452, 1370, 1283, 1219, 1180, 1167, 1141, 1012, 974, 959, 836, 803, 766, 743, 729, 700, 656; ¹H NMR (200 MHz, CDCl₃) δ 8.03 (d, 2H, *J* 6.0 Hz), 7.82 (sl, 3H), 7.53-7.39 (m, 5H), 5.81 (s, 1H), 2.59 (s, 2H), 2.34 (d, 1H, *J* 16.0 Hz), 2.22 (d, 1H, *J* 16.0 Hz), 1.13 (s, 3H), 0.94 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 196.7, 164.6, 151.8, 147.7, 146.2, 131.5, 130.9, 129.6, 129.3 128.6, 127.3, 125.2, 123.5, 123.0, 117.0, 115.9, 112.9, 50.7, 41.3, 34.8, 32.2, 29.2, 27.0; HRMS (ESI) *m*/*z* C₂₅H₂₁NO₄ [M + H]⁺ observed: 400.1488; C₂₅H₂₁NO₄ [M + H]⁺ requires: 400.1549.

12-(4-Fluorophenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4c)

mp 165-167 °C; [Lit.³ 185-186 °C]; IR (ATR) v / cm⁻¹ 2912, 1651, 1594, 1489, 1452, 1370, 1283, 1219, 1180, 1141, 1011, 975, 959, 836, 803, 766, 743, 729, 700, 657; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, 1H, *J* 12.0 Hz), 7.80-7.76 (m, 2H), 7.46-7.37 (m, 2H), 7.34-7.29 (m, 3H), 6.86 (t, 2H, *J* 8.0 Hz), 5.71 (s, 1H), 2.57 (s, 2H), 2.32 (d, 1H, *J* 16.0 Hz), 2.25 (d, 1H, *J* 16.0 Hz), 1.12 (s, 3H), 0.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 163.9, 161.2, 147.7, 140.5, 131.5, 131.2, 129.9, 129.8, 129.0, 128.4, 127.0, 124.9, 123.5, 117.3, 117.0, 115.1, 114.9, 114.0, 50.8, 41.3, 39.9, 32.2, 29.3, 27.0; HRMS (ESI) *m*/*z* C₂₅H₂₁FO₂ [M + H]⁺ observed: 373.1589; C₂₅H₂₁FO₂ [M + H]⁺ requires: 373.1604.

^{*}e-mail: adefatima@qui.ufmg.br

12-(4-Chlorophenyl)-9,9-dimethyl-9,10-dihydro-8*H*-benzo[*a*]xanthen-11(12*H*)-one (4d)

mp 162-164 °C; [Lit.¹ 178-179 °C]; IR (ATR) v / cm⁻¹ 2951, 1659, 1647, 1597, 1488, 1368, 1224, 1198, 1184, 1166, 1141, 1087, 1027, 979, 937, 834, 812, 752, 728, 657; ¹H NMR (200 MHz, CDCl₃) δ 7.91 (d, 1H, *J* 8.0 Hz), 7.81-7.76 (m, 2H), 7.45-7.30 (m, 5H), 7.14 (d, 2H, *J* 8.0 Hz), 5.69 (s, 1H), 2.57 (s, 2H), 2.33 (d, 1H, *J* 16.0 Hz), 2.23 (d, 1H, *J* 16.0 Hz), 1.13 (s, 3H), 0.97 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 196.8, 164.0, 147.6, 143.2, 131.8, 131.4, 131.1, 129.7, 129.0, 128.4, 128.3, 127.1, 125.0, 123.4, 117.0, 113.7, 50.8, 41.3, 34.1, 32.2, 29.2, 27.0; HRMS (ESI) *m*/*z* C₂₅H₂₁ClO₂ [M + Na]⁺ observed: 411.1120; C₂₅H₂₁ClO₂ [M + Na]⁺ requires: 411.1128.

12-(2-Hydroxyphenyl)-9,9-dimethyl-9,10-dihydro-8*H*-benzo[*a*]xanthen-11(12*H*)-one (**4e**)

mp 224-227 °C; [Lit.⁴ 229-230 °C]; IR (ATR) v / cm⁻¹ 3192, 2961, 1656, 1629, 1617, 1593, 1484, 1377, 1230, 1182, 1117, 1029, 810, 764; ¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H, O<u>H</u>), 7.79-7.75 (m, 2H), 7.68 (d, 1H, *J* 8.0 Hz), 7.40-7.32 (m, 3H), 7.02-7.00 (m, 2H), 6.63-6.61 (m, 2H), 5.77 (s, 1H), 2.61 (s, 2H), 2.42 (d, 1H, *J* 16.0 Hz), 2.35 (d, 1H, *J* 16.0 Hz), 1.15 (s, 3H), 0.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 166.8, 152.8, 147.8, 132.7, 131.5, 131.1, 129.1, 128.7, 128.2, 127.9, 127.5, 125.2, 123.4, 121.5, 118.8, 117.4, 116.5, 113.9, 50.2, 41.5, 32.3, 29.0, 28.0, 27.2; HRMS (ESI) *m*/z C₂₅H₂₂O₃ [M + Na]⁺ observed: 393.1447; C₂₅H₂₂O₃ [M + Na]⁺ requires: 393.1467.

12-(3-Hydroxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4f)

mp 238-240 °C; [Lit.⁵ 237-239 °C]; IR (ATR) v / cm⁻¹ 3407, 2964, 1638, 1615, 1585, 1478, 1466, 1369, 1348, 1275, 1223, 1175, 1145, 1113, 1025, 950, 820, 787, 751, 699; ¹H NMR (200 MHz, DMSO- d_6) δ 9.21 (s, 1H), 8.01 (d, 1H, *J* 8.0 Hz), 7.93-7.89 (m, 2H), 7.51-7.43 (m, 3H), 6.96 (t, 1H, *J* 8.0 Hz), 6.72 (d, 1H, *J* 8.0 Hz), 6.65 (s, 1H), 6.43 (d, 1H, *J* 8.0 Hz), 5.49 (s, 1H), 2.73-2.61 (m, 2H), 2.33 (d, 1H, *J* 16.0 Hz), 2.14 (d, 1H, *J* 16.0 Hz), 1.06 (s, 3H), 0.90 (s, 3H); ¹³C NMR (50 MHz, DMSO- d_6) δ 195.8, 163.6, 157.1, 147.1, 146.2, 131.0, 130.7, 128.9, 128.5, 127.0, 124.9, 123.2, 118.9, 117.3, 117.0, 115.1, 113.2, 50.1, 40.3, 33.9, 31.8, 28.7, 26.2; HRMS (ESI) *m*/*z* C₂₅H₂₂O₃ [M + Na]⁺ observed: 393.1449; C₂₅H₂₂O₃ [M + Na]⁺ requires: 393.1467.

12-(4-Hydroxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4g)

mp 210-212 °C; [Lit.² 185-187 °C]; IR (ATR) v / cm⁻¹ 3161, 2966, 2871, 1651, 1628, 1617, 1588, 1510, 1450, 1369, 1221, 1184, 1169, 1026, 1012, 839, 825, 746, 653; ¹H NMR (200 MHz, DMSO-*d*₆) δ 9.21 (s, 1H), 8.03 (d, 1H, *J* 6.0 Hz), 7.89-7.86 (m, 2H), 7.48-7.39 (m, 3H), 7.08 (d, 2H, *J* 8.0 Hz), 6.58 (d, 2H, *J* 8.0 Hz), 5.47 (s, 1H), 2.59-2.56 (m, 2H), 2.31 (d, 1H, *J* 16.0 Hz), 2.11 (d, 1H, *J* 16.0 Hz), 1.03 (s, 3H), 0.88 (s, 3H); ¹³C NMR (50 MHz, DMSO-*d*₆) δ 195.9, 164.3, 155.5, 147.0, 135.4, 131.0, 130.6, 129.0, 128.7, 128.4, 126.9, 124.8, 123.3, 117.7, 117.1, 114.8, 113.5, 50.1, 40.7, 33.1, 31.8, 28.8, 26.1; HRMS (ESI) *m*/*z* C₂₅H₂₂O₃ [M + Na]⁺ observed: 393.1880; C₂₅H₂₂O₃ [M + Na]⁺ requires: 393.1467.

9,9-Dimethyl-12-(4-(methylthio)phenyl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4h)

mp 171-173 °C; [Lit.⁶ 209-211 °C]; IR (ATR) v / cm⁻¹ 2954, 1645, 1594, 1488, 1374, 1221, 1163, 1140, 1023, 976, 958, 933, 844, 820, 778, 747, 666; ¹H NMR (200 MHz, CDCl₃) δ 7.98 (d, 1H, *J* 6.0 Hz), 7.79-7.74 (m, 2H), 7.45-7.30 (m, 5H), 7.07 (d, 2H, *J* 8.0 Hz), 5.68 (s, 1H), 2.57 (s, 2H), 2.37 (s, 3H), 2.29-2.19 (m, 2H), 1.12, (s, 3H), 0.98 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 196.9, 163.8, 147.6, 141.7, 135.8, 131.4, 128.8, 128.3, 126.9, 126.4, 124.9, 123.5, 117.4, 117.0, 114.0, 50.8, 41.3, 34.1, 32.2, 29.2, 27.1, 15.6; HRMS (ESI) *m*/*z* C₂₆H₂₄O₂S [M + Na]⁺ observed: 423.1320; C₂₆H₂₄O₂S [M + Na]⁺ requires: 423.1395.

12-(4-Methoxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4i)

mp 204-205 °C; [Lit.⁶ 206-208 °C]; IR (ATR) v / cm⁻¹ 2956, 1645, 1594, 1509, 1378, 1259, 1224, 1026, 848, 799, 746; ¹H NMR (200 MHz, CDCl₃) δ 7.98 (d, 1H, *J* 8.0 Hz), 7.79-7.72 (m, 2H), 7.44-7.22 (m, 5H), 6.70 (d, 2H, *J* 8.0 Hz), 5.65 (s, 1H), 3.68 (s, 3H), 2.56 (s, 2H), 2.32 (d, 1H, *J* 16.0 Hz), 2.22 (d, 1H, *J* 16.0 Hz), 1.11 (s, 3H), 0.97 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 197.0, 163.6, 157.7, 147.6, 137.1, 131.4, 129.3, 128.7, 128.3, 126.9, 124.8, 123.6, 117.8, 117.0, 114.3, 113.5, 55.0, 50.8, 41.3, 33.8, 32.2, 29.2, 27.1; HRMS (ESI) *m*/*z* C₂₆H₂₄O₃ [M + Na]⁺ observed: 407.1546; C₂₆H₂₄O₃ [M + Na]⁺ requires: 407.1623.

4-(9,9-Dimethyl-11-oxo-9,10,11,12-tetrahydro-8H-benzo[a]xanthen-12-yl)benzonitrile (4j)

mp 206-208 °C; [Lit.⁷ 203-204 °C]; IR (ATR) v / cm⁻¹ 2951, 2229, 1649, 1597, 1500, 1464, 1366, 1224, 1190, 1179, 1025, 1015, 978, 938, 845, 812, 752, 664; ¹H NMR (200 MHz, CDCl₃) δ 7.86-7.79 (m, 3H), 7.47-7.34 (m, 7H), 5.77 (s, 1H), 2.59 (s, 2H), 2.35 (d, 1H, *J* 16.0 Hz), 2.24 (d, 1H, *J* 16.0 Hz), 1.13 (s, 3H), 0.95 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 196.7, 164.5, 149.8, 147.7, 132.1, 131.5, 131.0, 129.5, 129.2, 128.6, 127.3, 125.1, 123.1, 118.8, 117.0, 116.0, 113.0, 110.0, 50.7, 41.3, 34.9, 32.2, 29.2, 27.0; HRMS (ESI) *m*/*z* C₂₆H₂₁NO₂ [M + Na]⁺ observed: 402.1442; C₂₆H₂₁NO₂ [M + Na]⁺ requires: 402.1470.

12-(4-Hydroxy-3-methoxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4k)

mp 199-200 °C; [Lit.¹ 164-166 °C]; IR (ATR) v / cm⁻¹ 3549, 2969, 1644, 1619, 1597, 1510, 1372, 1267, 1200, 1184, 1169, 1121, 1038, 832, 757; ¹H NMR (200 MHz, CDCl₃) δ 8.00 (d, 1H, *J* 8.0 Hz), 7.80-7.74 (m, 2H), 7.48-7.30 (m, 3H), 7.02 (s, 1H), 6.71-6.63 (m, 2H), 5.65 (s, 1H), 3.81 (s, 3H), 2.54 (s, 2H), 2.29 (s, 2H), 1.12 (s, 3H), 0.98 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 197.1, 163.7, 147.7, 146.1, 143.8, 136.9, 131.4, 128.7, 128.3, 126.9, 124.8, 123.6, 121.0, 117.7, 117.0, 114.4, 114.1, 111.3, 55.8, 50.9, 41.4, 34.1, 32.2, 29.3, 27.1; HRMS (ESI) *m*/*z* C₂₆H₂₄O₄ [M + Na]⁺ observed: 417.1300; C₂₆H₂₄O₄ [M + Na]⁺ requires: 417.1314.

12-(4-Hydroxy-3,5-dimethoxyphenyl)-9,9-dimethyl-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4I)

mp 205-206 °C; [Lit.⁸ 189-191 °C] IR (ATR) v / cm⁻¹ 3279, 2928, 2869, 1638, 1620, 1595, 1514, 1457, 1425, 1372, 1321, 1178, 1114, 807, 749, 664; ¹H NMR (200 MHz, CDCl₃) δ 7.97 (d, 1H, *J* 8.0 Hz), 7.76-7.70 (m, 2H), 7.44-7.30 (m, 3H), 6.52 (s, 2H), 5.61 (s, 1H), 5.36 (s, 1H), 3.71 (s, 6H), 2.52 (s, 2H), 2.25 (s, 2H), 1.07 (s, 3H), 0.95 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 196.9, 163.7, 147.7, 146.7, 136.0, 133.1, 131.4, 128.8, 128.3, 126.9, 124.9, 123.6, 117.5, 116.9, 114.3, 105.3, 56.2, 50.8, 41.3, 34.4, 32.2, 29.3, 26.9; HRMS (ESI) *m*/*z* C₂₇H₂₆O₅ [M + Na]⁺ observed: 447.1404; C₂₇H₂₆O₅ [M + Na]⁺ requires: 447.1420.

9,9-Dimethyl-12-(thiophen-2-yl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (4m)

mp 174-176 °C; [Lit.² 163-164 °C]; IR (ATR) v / cm⁻¹ 2963, 1650, 1593, 1518, 1462, 1375, 1357, 1285, 1221, 1176, 1146, 1115, 1064, 1026, 1013, 975, 958, 834, 812, 744, 699, 663; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, 1H, *J* 8.4 Hz), 7.82-7.78 (m, 2H), 7,49 (ddd, 1H, ${}^{3}J$ 8.4 Hz, ${}^{3}J$ 7.4 Hz, ${}^{4}J$ 1.2 Hz), 7.42 (ddd, 1H, ${}^{3}J$ 7.4 Hz, ${}^{3}J$ 7.4 Hz, ${}^{4}J$ 1.2 Hz), 7.42 (ddd, 1H, ${}^{3}J$ 7.4 Hz, ${}^{3}J$ 7.4 Hz, ${}^{4}J$ 1.2 Hz), 7.31 (d, 1H, *J* 8.4 Hz), 7.01 (dd, 1H, ${}^{3}J$ 5.2 Hz, ${}^{4}J$ 1.6 Hz), 6.78-6.74 (m, 2H), 6.05 (s, 1H), 2.57 (s, 2H), 2.35 (s, 2H), 1.14 (s, 3H), 1.05 (s, 3H); {}^{13}C NMR (100 MHz, CDCl₃) δ 196.8, 164.5, 148.4, 131.3, 129.0, 128.3, 127.1, 126.2, 125.0, 124.9, 123.9, 123.4, 117.1, 117.0, 113.7, 50.7, 41.3, 32.2, 29.3, 29.2, 27.1; HRMS (ESI) *m*/*z* C₂₃H₂₀O₂S [M + Na]⁺ requires: 383.1082.

9,9-Dimethyl-12-(pyridin-2-yl)-9,10-dihydro-8*H*-benzo[*a*]xanthen-11(12*H*)-one (**4n**)

mp 179-181 °C; [Lit.⁹ 179-181 °C]; IR (ATR) v / cm⁻¹ 1645, 1428, 1377, 1222, 1176, 1144, 1014, 849, 803, 756, 742, 658; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (ddd, 1H, ³J 4.8 Hz, ⁴J 1.6 Hz, ⁵J 1.2 Hz), 8.19 (d, 1H, J 8.0 Hz), 7.78-7.73 (m, 2H), 7.56-7.55 (m, 2H), 7.46 (ddd, 1H, ³J 8.6 Hz, ³J 7.0 Hz, ⁴J 1.2 Hz), 7.39-7.33 (m, 2H), 6.97 (dd, 1H, J 8.4 Hz, ³J 4.4 Hz), 5.88 (s, 1H), 2.66 (d, 1H, J 16.0 Hz), 2.61 (d, 1H, J 16.0 Hz), 2.34 (d, 1H, J 16.0 Hz), 2.24 (d, 1H, J 16.0 Hz), 1.13 (s, 3H), 1.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 165.1, 162.8, 147.7, 131.5, 131.4, 128.9, 128.4, 127.0, 124.8, 123.6, 121.4, 117.4, 112.6, 50.9, 41.4, 37.6, 32.3, 29.5, 27.1; HRMS (ESI) m/z C₂₄H₂₁NO₂ [M + H]⁺ observed: 356.1629; C₂₄H₂₁NO₂ [M + Na]⁺ requires: 356.1650.

9,9-Dimethyl-12-(5-nitrofuran-2-yl)-9,10-dihydro-8H-benzo[a]xanthen-11(12H)-one (40)

mp 194-196 °C; IR (ATR) v / cm⁻¹ 2965, 1644, 1595, 1538, 1497, 1391, 1372, 1353, 1286, 1222, 1171, 1016, 975, 950, 812, 743, 735, 665; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, 1H, *J* 8.4 Hz), 7.85-7.81 (m, 2H), 7.58 (t, 1H, *J* 7.4 Hz), 7.47 (t, 1H, *J* 7.4 Hz), 7.32 (d, 1H, *J* 9.2 Hz), 7.12 (d, 1H, *J* 3.6 Hz), 6.46 (d, 1H, *J* 3.6 Hz), 5.92 (s, 1H), 2.68 (d, 1H, *J* 17.6 Hz), 2.62 (d, 1H, *J* 17.6 Hz), 2.41-2.33 (m, 2H), 1.17 (s, 3H), 1.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 166.4, 159.4, 147.9, 131.4, 131.0, 130.0, 128.8, 127.6, 125.4, 123.6, 117.4, 112.8, 112.6, 110.3, 109.1, 50.7, 41.4, 32.4, 29.4, 29.1, 27.2; HRMS (ESI) *m*/*z* C₂₃H₁₉NO₅ [M + Na]⁺ observed: 412.1154; C₂₃H₁₉NO₅ [M + Na]⁺ requires: 412.1161.

References

- 1. Li, J.; Lu, L.; Su, W.; *Tetrahedron Lett.* **2010**, *51*, 2434.
- 2. Rama, V.; Kanagara, K.; Pitchumani, K.; *Tetrahedron Lett.* 2012, 53, 1018.
- 3. Zhang, Z.-H.; Zhang, P.; Peng, Y.; Yang, S. H.; Wang, H. J.; Deng, J.; J. Chem. Sci. 2010, 122, 427.
- 4. Mo, L.-P.; Chen, H.-L.; J. Chin. Chem. Soc. 2010, 57, 157.
- Khazaei, A.; Zolfigol, M. A.; Moosavi-Zare, A. R.; Zare, A.; Khojasteh, M.; Asgari, Z.; Khakyzadeh, V.; Khalafi-Nezhad, A.; *Catal. Commun.* 2012, 20, 54.
- Tabatabaeian, K.; Khorshidi, A.; Mamaghani, M.; Dadashi, A.; Jalali, M. K.; Can. J. Chem. 2011, 89, 623.
- 7. Shirini, F.; Khaligh, N. G.; *Dyes Pigm.* **2012**, *95*, 789.
- 8. Iniyavan, P.; Sarveswari, S.; Vijayakumar, V.; Res. Chem. Intermed. 2015, 41, 7413.
- Naidu, K. R. M.; Krishna, B. S.; Kumar, M. A.; Arulselvan, P.; Khalivulla, S. I.; Lasekan, O.; *Molecules* 2012, 17, 7543.

Compound	E _{elect} / Hartree	$S / (cal mol^{-1} K^{-1})$	G _{total} / Hartree
1	-343.43350953	78.237	-343.345551
5	-343.77034961	78.577	-343.668383
2	-458.21069783	85.497	-458.080157
6 (<i>RR</i>)/ 6 (<i>SS</i>)	-802.00927345	119.064	-801.751280
6 (<i>RS</i>)/ 6 (<i>SR</i>)	-802.00608185	119.858	-801.748682
7 (<i>RR</i>)/ 7 (<i>SS</i>)	-802.19224398	122.395	-801.923617
7(<i>RS</i>)/7(<i>SR</i>)	-802.19600028	121.483	-801.927014
7(<i>RS</i>)/7(<i>SR</i>)	-802.18310871	123.758	-801.915177
8	-725.97601200	114.115	-725.747697
9	-725.97051987	113.723	-725.742029
3	-459.65702757	92.298	-459.488427
10 (<i>RR</i>)/ 10 (<i>SS</i>)	-1185.64222292	159.169	-1185.219512
10 (<i>RS</i>)/ 10 (<i>SR</i>)	-1185.64057052	159.534	-1185.217637
11 (<i>RRR</i>)/ 11 (<i>SSS</i>)	-1185.62683514	153.194	-1185.200008
11 (<i>RRS</i>)/ 11 (<i>SSR</i>)	-1185.63766615	159.205	-1185.214516
11 (<i>RSR</i>)/ 11 (<i>SRS</i>)	-1185.63038838	157.947	-1185.206107
11 (<i>RSS</i>)/ 11 (<i>SRR</i>)	-1185.62059066	159.179	-1185.219516
12 (<i>RRR</i>)/ 12 (<i>SSS</i>)	-1185.65473113	167.478	-1185.237566
12 (<i>RRS</i>)/ 12 (<i>SSR</i>)	-1185.61336051	153.972	-1185.187313
12 (<i>RSR</i>)/ 12 (<i>SRS</i>)	-1185.65037566	164.316	-1185.231176
12 (<i>RSS</i>)/ 12 (<i>SRR</i>)	-1185.65276349	165.508	-1185.234639
4 (<i>R</i>)/ 4 (<i>S</i>)	-1109.27718129	147.430	-1108.892093
H ₂ O	-76.01074652	44.987	-76.005366
H_3O^+	-76.28933842	48.251	-76.271703

Table S1. Electronic nuclear energy, entropy, and total energy of reagents, intermediates, and products of the Scheme 1,for structures in the gaseous phase and without intermolecular interactions

Compound	E _{elect} / Hartree	$S / (cal mol^{-1} K^{-1})$	G _{total} / Hartree
1	-343.43350953	78.237	-343.345551
5	-343.77034961	78.577	-343.668383
2	-458.21069783	85.497	-458.080157
13 (<i>RR</i>)/ 13 (<i>SS</i>)	-801.98843491	120.340	-801.731797
13 (<i>RS</i>)/ 13 (<i>SR</i>)	-801.99019428	121.009	-801.733947
14 (<i>RR</i>)/ 14 (<i>SS</i>)	-802.19164214	121.946	-801.923138
14(<i>RS</i>)/14(<i>SR</i>)	-802.19814540	122.692	-801.930406
15	-725.98218290	113.930	-725.754004
16	-725.97065189	115.240	-725.743349
3	-459.65702757	92.298	-459.488427
17 (<i>RR</i>)/ 17 (<i>SS</i>)	-1185.64723838	159.904	-1185.225088
17 (<i>RS</i>)/ 17 (<i>SR</i>)	-1185.64211859	159.600	-1185.219436
18 (<i>RRR</i>)/ 18 (<i>SSS</i>)	-1185.62990388	154.791	-1185.204187
18 (<i>RRS</i>)/ 18 (<i>SSR</i>)	-1185.64211857	159.598	-1185.219435
18 (<i>RSR</i>)/ 18 (<i>SRS</i>)	-1185.63641958	158.312	-1185.212540
18 (<i>RSS</i>)/ 18 (<i>SRR</i>)	-1185.63937867	161.594	-1185.217622
19 (<i>RRR</i>)/ 19 (<i>SSS</i>)	-1185.65552026	164.707	-1185.236694
19 (<i>RSS</i>)/ 19 (<i>SSR</i>)	-1185.65460163	165.579	-1185.236684
19 (<i>RSR</i>)/ 19 (<i>SRS</i>)	-1185.65648070	167.509	-1185.239495
19 (<i>RSS</i>)/ 19 (<i>SRR</i>)	-1185.64922236	168.478	-1185.232887
20 (<i>R</i>)/ 20 (<i>S</i>)	-1109.27716783	149.395	-1108.893327

Table S2. Electronic nuclear energy, entropy, and total energy of reagents, intermediates, and products of the Scheme 2, for structures in the gaseous phase and without intermolecular interactions

Step	Reaction	$\Delta E_{elect} / (kcal mol^{-1})$	$\Delta S / (cal mol^{-1} K^{-1})$	$\Delta G_{total} / (kcal mol^{-1})$
1	$1 \rightarrow 5$	-36.55	-2.92	-35.45
2	$5 + 2 \rightarrow 6(RR)$	-17.71	-45.01	-1.72
2	$5 + 2 \rightarrow 6(RS)$	-15.71	-44.22	-0.09
3	$6(RR) \rightarrow 7(RR)$	60.00	0.07	58.99
3	$6(RS) \rightarrow 7(RS)$	55.23	0.64	62.65
4	$7(RR) \rightarrow 8$	-45.87	39.97	-60.10
4	$7(RR) \rightarrow 9$	-42.43	39.58	-56.55
4	$7(RS) \rightarrow 8$	-51.61	38.61	-65.40
4	$7(RS) \rightarrow 9$	-48.16	38.22	-61.84
5	$8 + 3 \rightarrow 10(RR)$	-5.76	-47.24	10.42
5	$8 + 3 \rightarrow 10$ (RS)	-4.73	-46.88	11.60
5	$9 + 3 \rightarrow 10(RR)$	-9.21	-46.85	6.87
5	$9 + 3 \rightarrow 10(RS)$	-8.17	-46.49	8.04
6	$10(RR) \rightarrow 11(RRR)$	9.66	-5.98	12.24
6	$10(RR) \rightarrow 11(RRS)$	2.86	0.04	3.13
6	$10(RS) \rightarrow 11(RSS)$	12.54	-0.36	-1.18
6	$10(RS) \rightarrow 11(RSR)$	6.39	-1.59	7.24
7	$11(RRR) \rightarrow 12(RRR)$	-17.50	14.28	-23.57
7	$11(RRS) \rightarrow 12(RRS)$	15.25	-5.23	17.07
7	$11(RSR) \rightarrow 12(RSR)$	-12.54	6.37	-15.73
7	$11(RSS) \rightarrow 12(RSS)$	-20.19	6.33	-9.49
8	$12(RRR) \to 4(R)$	55.35	28.20	46.29
8	$12(RRS) \to 4(R)$	29.39	41.71	14.76
8	$12(RSR) \rightarrow 4(R)$	52.62	31.37	42.28
8	$12(RSS) \to 4(R)$	54.12	30.17	44.45

Table S3. Changes in energy of each reaction step described on Scheme 1, based on data shown in Table S1, only one

 enantiomer is shown in each pair of ones

Step	Reaction	$\Delta E_{elect} / (kcal mol^{-1})$	$\Delta S / (cal mol^{-1} K^{-1})$	$\Delta G_{total} / (kcal mol^{-1})$
1	$1 \rightarrow 5$	-36.55	-2.92	-35.45
2	$2 + 3 \rightarrow 13(RR)$	-4.64	-43.73	10.51
2	$2 + 3 \rightarrow 13$ (RS)	-5.74	-42.55	9.16
3	$13(RR) \rightarrow 14(RR)$	47.30	-1.66	47.06
3	$13(RS) \rightarrow 14(RS)$	44.33	-1.58	43.85
4	$14(RR) \rightarrow 15$	-50.12	40.24	-64.36
4	$14(RR) \rightarrow 16$	-42.89	41.55	-57.68
4	$14(RS) \rightarrow 15$	-46.04	39.49	-59.80
4	$14(RS) \rightarrow 16$	-38.81	40.80	-53.12
5	$15 + 3 \rightarrow 17(RR)$	-5.04	-46.32	10.88
5	$15 + 3 \rightarrow 17(RS)$	-1.82	-46.63	14.43
5	$16 + 3 \rightarrow 17(RR)$	-12.27	-47.63	4.20
5	$16 + 3 \rightarrow 17(RS)$	-9.06	-47.94	7.74
6	$17(RR) \rightarrow 18(RRR)$	10.88	-5.11	13.12
6	$17(RR) \rightarrow 18(RRS)$	3.21	-0.31	3.55
6	$17(RS) \rightarrow 18(RSS)$	1.72	1.99	1.14
6	$17(RS) \rightarrow 18(RSR)$	3.58	-1.29	4.33
7	$18(RRR) \rightarrow 19(RRR)$	-16.07	9.92	-20.40
7	$18(RRS) \rightarrow 19(RRS)$	-7.83	5.98	-10.82
7	$18(RSR) \rightarrow 19(RSR)$	-12.59	9.20	-16.91
7	$18(RSS) \rightarrow 19(RSS)$	-6.18	6.88	-9.58
8	$19(RRR) \rightarrow 20(R)$	55.86	32.94	44.97
8	$19(RRS) \rightarrow 20(R)$	55.28	32.07	44.96
8	$19(RSR) \rightarrow 20(R)$	56.46	30.14	46.73
8	$19(RSS) \rightarrow 20(R)$	51.90	29.17	42.58

Table S4. Changes in energy of each reaction step described on Scheme 2, based on data shown in Table S2

Compound	E _{elect} / Hartree	$S / (cal mol^{-1} K^{-1})$	G _{total} / Hartree
25 °C			
5	-345.732635019	80.542	-345.638653019
2	-460.886681498	87.864	-460.765671498
6	-806.656781353	123.714	-806.416850353
13	-806.637386015	127.229	-806.400126015
TS-1	-806.640134897	123.978	-806.405818897
TS-2	-806.623670106	125.058	-806.386925106
130 °C			
5	-345.732635019	213.780	-345.638653
2	-460.886681498	263.830	-460.765671
6	-806.656781353	482.264	-806.400831
13	-806.637386015	483.614	-806.416850
TS-1	-806.640134897	479.662	-806.386925
TS-2	-806.623670106	480.059	-806.400126

Table S5. Electronic (E_{elect}), entropy (S) and Gibbs free energy (G_{total}) of the optimized compounds at LC- ω PBE/6-311++G(d,p) level of theory

Coordinates of chemical species calculated at LC-wPBE/6-311++G(d,p) level of theory and energetic data

Cartesian coordinates of the structures calculated at LC- ω PBE/6-311++G(d,p) level of theory are given hereafter, and also the correspondent energetic data. The total Gibbs free energy (G_{total}) is the sum of the electronic energy (E_{elect}) with the thermal correction for the Gibbs free energy, which includes the zero point energy (ZPE) and depends on the temperature. This correction takes in account vibrational, translational and rotational motions in gas phase for the studied molecules.

Structure 5

 $E_{elect} = -345.732635019$ Hartree G_{total} at 25 °C = -345.638653019 Hartree G_{total} at 130 °C = -345.638653 Hartree Cartesian coordinate С 0.098646 0.000000 -0.003574 С 0.072244 0.000000 1.383362 С 1.248104 0.000000 2.137998 С 2.460933 0.000000 1.503005 С 2.505542 0.000000 0.092977 1.312170 0.000000 С -0.652918 3.702483 С 0.000000 -0.640319 4.893949 0 0.000000 -0.184525 Η 3.678605 0.000000 -1.729241

Η	3.364991	0.000000	2.105660
Н	1.196985	0.000000	3.220001
Н	-0.883646	0.000000	1.897043
Н	-0.825478	0.000000	-0.568462
Н	1.353156	0.000000	-1.737615
Η	4.954698	0.000000	0.784449

Structure 2

 $E_{elect} = -460.886681498$ Hartree G_{total} at 25 °C = -460.765671498 Hartree G_{total} at 130 °C = -460.765671Hartree Cartesian coordinate C -1.203792 0.000000 -0.743898 0.010825 С 0.000000 -0.021622 С 1.236926 0.000000-0.718828 C 1.209794 0.000000-2.133446 С 0.031231 0.000000 -2.812827 C -1.193407 0.000000 -2.106316 C 2.450691 0.0000000.010479 C 2.445238 0.000000 1.371625 С 1.218172 0.0000002.071799 С 0.036383 0.000000 1.396265 O -2.381926 0.000000-2.769078Η 0.023946 0.000000 -3.899447 2.148936 Η 0.000000 -2.677591 Η 3.388645 0.000000 -0.536376 Η 3.379135 0.000000 1.922736 Η 1.221768 0.0000003.156573 Н -0.905425 0.000000 1.935620 Н -2.152456 0.000000 -0.219208Н -2.226963 0.000000 -3.715971

Structure 6

 $E_{elect} = -806.637386015$ Hartree G_{total} at 25 °C = -806.400126015 Hartree G_{total} at 130 °C = -806.416850 Hartree Cartesian coordinate C -17.991785 -0.055460 7.880906 C -17.211363 0.705758 8.738706 C -15.839751 0.779388 8.552793 7.506777 C -15.245787 0.094479 C -16.023251 -0.661196 6.640896

С	-17.391961	-0.736467	6.826253
С	-19.482665	-0.123998	8.073136
0	-20.195238	0.148847	6.894082
С	-19.933264	-1.567874	8.544856
С	-19.453014	-1.765543	9.949409
С	-20.311428	-1.440711	11.009784
С	-21.670416	-1.098250	10.722593
С	-22.224666	-1.172639	9.478803
С	-21.404114	-1.580409	8.419120
С	-19.862138	-1.522103	12.332031
С	-18.575958	-1.937647	12.593966
С	-17.735686	-2.273210	11.539164
С	-18.163456	-2.179463	10.223432
0	-21.861793	-1.948603	7.271395
Η	-23.285416	-1.007538	9.324658
Η	-22.309250	-0.825406	11.558847
Η	-20.535492	-1.268813	13.144391
Η	-18.223121	-2.012382	13.615648
Η	-16.728043	-2.616883	11.745773
Η	-17.489531	-2.436276	9.413823
Η	-19.503539	-2.285991	7.844896
Η	-19.781930	0.570415	8.868330
Η	-17.999389	-1.317322	6.137856
Η	-15.559962	-1.189184	5.814960
Η	-14.173468	0.155347	7.357972
Η	-15.235267	1.380535	9.222632
Η	-17.676016	1.249329	9.555922
Η	-19.745384	0.846578	6.408347
Н	-22.822229	-1.846648	7.195262

Structure 13

E_{elect} = -806.656781353 Hartree G_{total} at 25 $^{\circ}C$ = -806.416850353 Hartree G_{total} at 130 $^{\circ}C$ = -806.400831Hartree Cartesian coordinate C -16.344571 1.086621 7.074601 C -14.968462 1.344457 7.212257 C -14.067873 1.168972 6.096266 C -14.566064 0.735028 4.916666 C -15.997072 0.466265 4.686818 C -16.852448 0.655478 5.891837 C -12.661363 1.436641 6.261933

С	-12.186484	1.851119	7.451471
С	-13.087194	2.021812	8.544420
С	-14.423676	1.781482	8.437013
0	-18.152750	0.439106	5.807138
Η	-16.315520	1.219459	3.946432
Η	-13.906014	0.577404	4.068031
Η	-12.005243	1.296557	5.409753
Η	-11.132491	2.056434	7.592357
Η	-12.687825	2.356019	9.496768
Η	-15.078702	1.920988	9.288793
Η	-17.011527	1.220134	7.917514
Η	-18.424687	0.108927	4.944314
С	-16.034188	-0.423942	1.566062
С	-15.386079	-0.491645	0.346055
С	-14.178143	-1.164289	0.240657
С	-13.624573	-1.767005	1.356767
С	-14.269409	-1.693053	2.582570
С	-15.476967	-1.018589	2.691865
С	-16.202320	-0.917719	4.016254
0	-15.786890	-1.845245	4.981409
Η	-17.275496	-1.038212	3.806389
Η	-13.833241	-2.168350	3.455230
Η	-12.686035	-2.303819	1.275039
Η	-13.673495	-1.226316	-0.716823
Η	-15.830196	-0.030135	-0.528614
Η	-16.992842	0.085335	1.632418
Η	-15.937630	-2.740278	4.662051

Structure TS1

E_{elect} = -806.640134897 Hartree G_{total} at 25 $^{\circ}C$ = -806.405818897 Hartree G_{total} at 130 °C = -806.386925 Hartree Cartesian coordinate C -0.658116 -0.403281 0.244671 C -0.341069 -0.133524 1.586989 C 0.980655 0.211473 1.923999 C 1.958555 0.293892 0.912153 0.028464 C 1.629356 -0.387631 C 0.312416 -0.329351 -0.719429 C 1.301693 0.4307643.295130 C 0.380924 0.289403 4.284512 C -0.946781 -0.062947 3.946250

С	-1.333152	-0.162857	2.619478
С	-1.885849	2.065807	2.678076
0	-2.398547	2.291565	3.850656
0	-1.890408	-0.234239	4.871127
С	-2.679601	2.126208	1.468171
С	-2.042470	2.505674	0.288553
С	-2.781287	2.662391	-0.870868
С	-4.143271	2.418846	-0.857822
С	-4.780562	2.017123	0.312178
С	-4.054840	1.873511	1.473193
Η	0.656917	0.426756	5.325079
Η	2.322438	0.697187	3.551495
Η	2.976575	0.557234	1.179894
Η	2.384775	0.080465	-1.163109
Η	0.065185	-0.556842	-1.750610
Η	-1.671378	-0.689819	-0.016951
Η	-2.326512	-0.540334	2.401676
Η	-0.820310	2.273899	2.632256
Η	-4.567335	1.534561	2.370776
Η	-5.845620	1.817520	0.309855
Η	-4.721187	2.539642	-1.767425
Η	-2.291743	2.976329	-1.785163
Η	-0.974562	2.696729	0.286262
Η	-3.366246	2.290048	3.839235
Η	-1.545004	-0.092664	5.759425

Structure TS2

$E_{elect} = -806.623670106$ Hartree				
G _{to}	_{otal} at 25 °C =	-806.38692	5106 Hartree	
G _{to}	_{tal} at 130 °C	= -806.40012	26 Hartree	
Ca	rtesian coord	inate		
С	0.120259	0.115450	-0.185653	
С	0.122762	-0.026765	1.197050	
С	1.321235	-0.060092	1.888177	
С	2.517124	0.048488	1.199682	
С	2.519981	0.189634	-0.181876	
С	1.326458	0.220145	-0.874297	
С	-1.180440	0.208275	-0.869642	
0	-1.318799	0.924069	-1.962830	
С	-1.693687	-1.719846	-1.299623	
С	-0.735651	-1.951158	-2.296503	
С	-1.003878	-1.651198	-3.620088	

-2.322843	-1.230859	-3.970858
-3.336911	-1.171868	-2.992678
-3.048215	-1.453308	-1.694289
-0.003759	-1.764388	-4.635353
-0.297384	-1.456256	-5.919542
-1.607116	-1.023770	-6.261992
-2.587536	-0.915446	-5.326457
-4.010539	-1.338112	-0.762616
-1.513402	-2.122506	-0.305990
0.252401	-2.296403	-2.008536
0.987311	-2.107883	-4.356844
0.455425	-1.542834	-6.694088
-1.826489	-0.782703	-7.296594
-3.584029	-0.593318	-5.606509
-4.351169	-0.909790	-3.269342
-3.819281	-1.870358	0.015865
-2.053730	0.299414	-0.228079
1.355191	0.313377	-1.957851
3.458475	0.276308	-0.716965
3.456503	0.026520	1.740494
1.320183	-0.161170	2.967184
-0.815519	-0.092634	1.739857
-0.475955	1.075616	-2.409429
	-2.322843 -3.336911 -3.048215 -0.003759 -0.297384 -1.607116 -2.587536 -4.010539 -1.513402 0.252401 0.987311 0.455425 -1.826489 -3.584029 -4.351169 -3.819281 -2.053730 1.355191 3.458475 3.456503 1.320183 -0.815519 -0.475955	-2.322843-1.230859-3.336911-1.171868-3.048215-1.453308-0.003759-1.453308-0.297384-1.456256-1.607116-1.023770-2.587536-0.915446-4.010539-1.338112-1.513402-2.1225060.252401-2.2964030.987311-2.1078830.455425-1.542834-1.826489-0.782703-3.584029-0.593318-4.351169-0.909790-3.819281-1.870358-2.0537300.2994141.3551910.3133773.4584750.2763083.4565030.0265201.320183-0.161170-0.815519-0.092634-0.4759551.075616

· ·	±	•
Structural formula		$C_{25}H_{22}O_3$
$fw / (g mol^{-1})$		370.43
Cryst. syst.		monoclinic
Space group		<i>C</i> 2/c
Z / Z'		8/1
T / K		298(2)
Unit cell	<i>a</i> / Å	26.011(5)
	<i>b</i> / Å	6.8970(10)
	<i>c</i> / Å	21.557(5)
	β / degree	97.902(10)
$V / Å^3$		3830.6(13)
Calcd. density / (mg m ⁻³)		1.285
Absorp. coeff. / mm ⁻¹		0.083
θ-Range / degree		3.06 to 26.39
Index ranges	h	-31 to 32
	k	-8 to 8
	1	-26 to 26
Data collected		7430
Unique reflections		3918
Unique reflections with $I > 2\sigma$ (I)		2820
Symmetry factor (R_{int})		0.0224
Completeness to θ_{max} / %		99.7
F (000)		1568
Parameters refined		256
Goodness-of-fit on F ²		1.050
D1 factor for $L > 2-(I)$		0.0497
K1 factor for $1 > 26$ (1)		
wR2 factor for all data		0.1355
$\Delta \rho \max/\min / (e \text{\AA}^{-3})$		0.233/-0.231
CCDC deposit number		1002986

Table S6. Crystal data and refinement parameters of xanthenone 4e derivatives reported in this study

_

Figure S1. Optimized structures at LC- ω PBE/6-311++G(d,p) level of theory. Legend atoms: C (black), O (red) and H (grey).

Figure S2. Variation of Gibbs free energy (ΔG_{total}) in function of temperature for the studied steps at LC- ω PBE/6-311++G(d,p) level of theory.

Compound: 5

HOMO - 1E = -0.56518 Hartree

HOMO E = -0.55492 Hartree

LUMO E = -0.22307 Hartree

LUMO + 1 E = -0.11112 Hartree

Figure S3. Frontier orbitals of all species sketched in Scheme 3.

Compound: 2

Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

HOMO - 1E = -0.47301 Hartree

HOMO E = -0.47075 Hartree

LUMO E = -0.18861 Hartree

LUMO + 1 E = -0.08611 Hartree

Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

HOMO – 1 E = -0.47529 Hartree

HOMO E = -0.46650 Hartree

LUMO E = -0.19926 Hartree

LUMO + 1 E = -0.09553 Hartree

Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

HOMO – 1 E = -0.48191 Hartree

HOMO E = -0.45144 Hartree

LUMO E = -0.18082 Hartree

LUMO + 1 E = -0.09809 Hartree

Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

HOMO - 1E = -0.48191 Hartree

HOMO E = -0.45144 Hartree

LUMO E = -0.18082 Hartree

LUMO + 1 E = -0.09809 Hartree

Figure S3. Frontier orbitals of all species sketched in Scheme 3 (cont.).

Figure S4. Gibbs free energy in function of intrinsic reaction coordinate for **TS1** and **TS2** at LC- ω PBE/6-311++G(d,p) level of theory.

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4a.

Figure S6. ¹³C NMR spectrum (down) and DEPT 135 (up) (100 MHz, CDCl₃) of compound 4a.

Figure S7. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4b.

Figure S8. ¹³C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl₃) of compound 4b.

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **4c**.

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4c.

Figure S11. DEPT 135 spectrum (100 MHz, CDCl₃) of compound 4c.

Figure S12. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4d.

Figure S13. ¹³C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl₃) of compound 4d.

Figure S14. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4e.

Figure S15. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4e.

Figure S16. DEPT 135 spectrum (100 MHz, CDCl₃) of compound 4e.

Figure S17. ¹H NMR spectrum (200 MHz, DMSO-*d*₆) of compound 4f.

Figure S18. ¹³C NMR spectrum (50 MHz, DMSO-*d*₆) of compound **4f**.

Figure S19. DEPT 135 spectrum (50 MHz, DMSO-*d*₆) of compound 4f.

Figure S20. ¹H NMR spectrum (200 MHz, DMSO-*d*₆) of compound **4g**.

Figure S21. ¹³C NMR spectrum (50 MHz, DMSO-*d*₆) of compound 4g.

Figure S22. DEPT 135 spectrum (50 MHz, DMSO-*d*₆) of compound 4g.

Figure S23. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4h.

Figure S24. ¹³C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl₃) of compound 4h.

Figure S25. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4i.

Figure S26. ¹³C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl₃) of compound 4i.

Figure S27. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4j.

Figure S28. ¹³C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl₃) of compound 4j.

Figure S29. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4k.

Figure S30. ¹³C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl₃) of compound 4k.

Figure S31. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4l.

Figure S32. ¹³C NMR spectrum (down) and DEPT 135 (up) (50 MHz, CDCl₃) of compound 4l.

Figure S33. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4m.

Figure S34. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4m.

Figure S35. DEPT 135 spectrum (100 MHz, CDCl₃) of compound 4m.

Figure S36. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4n.

Figure S37. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **4n**.

Figure S38. DEPT 135 spectrum (100 MHz, CDCl₃) of compound 4n.

Figure S39. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 40.

Figure S40. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 40.

Figure S41. DEPT 135 spectrum (100 MHz, CDCl₃) of compound 40.