## **Supplementary Information**

## Withanolides from Leaves of Nicandra physalodes

Diego A. S. Carrero,<sup>a</sup> Pedro H. J. Batista,<sup>a</sup> Luciana G. S. Souza,<sup>a</sup> Francisco C. L. Pinto,<sup>a</sup> Mayron A. de Vasconcelos,<sup>b</sup> Edson H. Teixeira,<sup>b</sup> Kirley M. Canuto,<sup>c</sup> Gilvandete M. P. Santiago,<sup>a</sup> Edilberto R. Silveira<sup>a</sup> and Otília D. L. Pessoa<sup>\*a</sup>

> <sup>a</sup>Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970 Fortaleza-CE, Brazil

<sup>b</sup>Laboratório Integrado de Biomoléculas (LIBS), Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, 60441-750 Fortaleza-CE, Brazil

> <sup>c</sup>Embrapa Agroindustria Tropical, R. Dra. Sara Mesquita, 2270, 60511-110 Fortaleza-CE, Brazil

\*e-mail: otilialoiola@gmail.com

| Position | 5 <sup>a</sup>  |                 | 6 <sup>b</sup>  |                 | <b>7</b> <sup>a</sup> |                 | <b>8</b> <sup>a</sup> |                 | 9 <sup>a</sup>  |                 | <b>10</b> <sup>a</sup> |                  |
|----------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|------------------------|------------------|
|          | $\delta_{ m C}$ | $\delta_{ m H}$ | $\delta_{ m C}$ | $\delta_{ m H}$ | $\delta_{ m C}$       | $\delta_{ m H}$ | $\delta_{ m C}$       | $\delta_{ m H}$ | $\delta_{ m C}$ | $\delta_{ m H}$ | $\delta_{ m C}$        | $\delta_{ m H}$  |
| 1        | 204.0           | _               | 205.9           | _               | 203.2                 | _               | 204.2                 | _               | 204.1           | _               | 203.9                  | _                |
| 2        | 129.2           | 6.07, dd (2.0,  | 129.3           | 5.79, dd (2.4,  | 129.3                 | 6.00, d (9.9)   | 129.6                 | 6.02, dd (10.0, | 129.6           | 5.96, m         | 129.3                  | 6.17, dd (10.1,  |
|          |                 | 10.0)           |                 | 10.0)           |                       |                 |                       | 2.0)            |                 |                 |                        | 1.8)             |
| 3        | 141.5           | 6.62, m         | 142.7           | 6.65, m         | 141.4                 | 6.59, m         | 140.9                 | 6.57, m         | 140.8           | 6.55, m         | 141.3                  | 6.60, ddd        |
|          |                 |                 |                 |                 |                       |                 |                       |                 |                 |                 |                        | (10.2, 5.3, 2.1) |
| 4        | 38.3            | 2.67, dd (4.7,  | 38.3            | 2.86, m         | 38.1                  | 2.56, dd (5.0,  | 38.2                  | 2.53, dd (1.8,  | 38.0            | 2.48, dd (19.0, | 38.3                   | 2.81, m          |
|          |                 | 18.1)           |                 | 2.52, dd (19.0, |                       | 14.9)           |                       | 10.0)           |                 | 4.8)            |                        | 2.62, dd (18.7,  |
|          |                 | 2.74, m         |                 | 5.0)            |                       |                 |                       |                 |                 | 2.63, m         |                        | 4.7)             |
| 5        | 73.8            | _               | 74.5            | _               | 74.3                  | _               | 74.4                  | _               | 74.3            | _               | 73.9                   | _                |
| 6        | 57.4            | 3.33, d (2.1)   | 57.8            | 3.22, d (3.9)   | 56.6                  | 3.16, d (3.3)   | 56.8                  | 3.12, d (3.7)   | 56.7            | 3.88, d (3.2)   | 55.0                   | 3.30, d (3.8)    |
| 7        | 54.6            | 4.08, s         | 56.0            | 4.00, m         | 56.0                  | 3.30, s         | 56.3                  | 3.30, s         | 57.3            | 3.11, m         | 57.4                   | 3.10, m          |
| 8        | 40.2            | 3.08, m         | 40.2            | 3.08, d (11.0)  | 36.4                  | 2.20, m         | 37.6                  | 2.86, m         | 36.9            | 2.16, m         | 39.8                   | 3.05, m          |
| 9        | 32.3            | 2.45, td (3.7,  | 33.2            | 1.98, m         | 38.7                  | 3.96, dd (2.4,  | 36.2                  | 2.19, m         | 36.4            | 2.16, m         | 32.7                   | 2.06, m          |
|          |                 | 11.0, 11.0)     |                 |                 |                       | 13.0)           |                       |                 |                 |                 |                        |                  |
| 10       | 52.7            | -               | 54.9            | _               | 52.6                  | -               | 52.1                  | -               | 52.1            | _               | 52.6                   | -                |
| 11       | 24.7            | 1.59, q         | 25.7            | 2.86, m         | 39.4                  | 2.75, d (13.1)  | 33.5                  | 1.74, m         | 21.9            | 3.11, m         | 25.1                   | 3.05, m          |
|          |                 | 3.08, m         |                 | 1.82, m         |                       | 2.68, d (8.7)   |                       |                 |                 |                 |                        |                  |
| 12       | 30.0            | 2.74, m         | 30.6            | 1.53, m         | 213.3                 | _               | 35.1                  | 2.32, m         | 35.5            | 1.62, m         | 30.2                   | 2.81, m          |
|          |                 | 2.79, m         |                 | 2.86, m         |                       |                 |                       |                 |                 |                 |                        |                  |
| 13       | 145.0           | -               | 143.1           | -               | 58.2                  | -               | 49.6                  | _               | 47.7            | _               | 137.4                  | -                |

**Table S1.** <sup>1</sup>H (300 MHz) and <sup>13</sup>C (75 MHz) NMR spectroscopic data for the known compounds **5-10** ( $\delta$  in ppm, J in Hz)

| Position | 5 <sup>a</sup>  |                 | 6 <sup>b</sup>  |                 | 7 <sup>a</sup>  |                 | <b>8</b> <sup>a</sup> |                 | 9 <sup>a</sup>  |                 | <b>10</b> <sup>a</sup> |                 |
|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|------------------------|-----------------|
|          | $\delta_{ m C}$ | $\delta_{ m H}$ | $\delta_{ m C}$ | $\delta_{ m H}$ | $\delta_{ m C}$ | $\delta_{ m H}$ | $\delta_{ m C}$       | $\delta_{ m H}$ | $\delta_{ m C}$ | $\delta_{ m H}$ | $\delta_{ m C}$        | $\delta_{ m H}$ |
| 14       | 138.5           | _               | 138.1           | _               | 43.9            | 2.05, q (10.9)  | 47.3                  | 1.74, m         | 62.0            | 1.75            | 136.8                  | _               |
| 15       | 126.2           | 7.74, m         | 126.7           | 7.35, d (7.9)   | 24.0            | 1.60, m         | 22.6                  | 3.17, m         | 77.0            | 4.99, m         | 125.0                  | 7.64, d (8.0)   |
| 16       | 126.0           | 7.96, d (4.5)   | 125.6           | 7.00, d (8.0)   | 27.4            | 1.45, m         | 24.0                  | 1.74, m         | 130.6           | 5.97, m         | 125.2                  | 7.39, d (7.9)   |
| 17       | 136.2           | _               | 137.2           | _               | 53.9            | 1.50, m         | 85.4                  | _               | 156.8           | -               | 143.3                  | _               |
| 18       | 129.2           | 7.76, s         | 129.6           | 6.97, s         | 15.1            | 1.28, s         | 16.4                  | 1.09, s         | 15.4            | 1.23, s         | 129.5                  | 7.19, s         |
| 19       | 14.4            | 1.24, s         | 18.8            | 1.23, s         | 11.8            | 0.98, d (7.0)   | 15.2                  | 1.19, s         | 19.1            | 1.02, s         | 14.4                   | 1.23, d (7.1)   |
| 20       | 198.0           | _               | 44.7            | 2.74, m         | 40.6            | 1.70, m         | 42.1                  | 2.07, m         | 35.2            | 2.32, m         | 45.2                   |                 |
| 21       | 26.9            | 2.57, s         | 18.1            | 1.21, s         | 13.9            | 1.14, s         | 14.5                  | 0.98, d (7.0)   | 17.2            | 1.08, d (6.8)   | 16.5                   | 1.56, d (7.0)   |
| 22       | —               | _               | 69.7            | 4.00, m         | 66.6            | 4.30, m         | 67.8                  | 4.68, m         | 67.5            | 4.36, m         | 76.0                   | 4.08, m         |
| 23       | _               | _               | 35.6            | 2.86, m         | 31.0            | 1.83, d (7.0)   | 34.6                  | 1.87, m         | 34.5            | 1.94, m         | 42.7                   | 1.8, m          |
|          |                 |                 |                 | 1.53, m         |                 |                 |                       |                 |                 |                 |                        |                 |
| 24       | _               | _               | 64.3            | _               | 63.1            | -               | 63.5                  | _               | 62.8            | -               | 74.3                   | -               |
| 25       | _               | _               | 64.0            | _               | 63.9            | _               | 63.0                  | _               | 62.9            | -               | 77.5                   | _               |
| 26       | _               | _               | 92.9            | 4.98, s         | 93.1            | 5.50, s         | 92.8                  | 5.46, m         | 92.9            | 5.45, s         | 98.8                   | 5.35, d (4.1)   |
| 27       | _               | _               | 17.1            | 1.33, s         | 19.2            | 1.38, s         | 17.6                  | 1.49, s         | 19.4            | 1.34, s         | 19.1                   | 1.96, s         |
| 28       | _               | _               | 14.8            | 1.31, s         | 17.6            | 1.48, s         | 19.2                  | 1.32, s         | 17.6            | 1.47, s         | 24.0                   | 1.87, s         |

**Table S1.** <sup>1</sup>H (300 MHz) and <sup>13</sup>C (75 MHz) NMR spectroscopic data for the known compounds **5-10** ( $\delta$  in ppm, J in Hz) (cont.)

<sup>a</sup>Measured in pyridine- $d_{5;}$ <sup>b</sup>measured in MeOH.



**Figure S1.** <sup>1</sup>H NMR (500 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound **1**.



**Figure S2.** <sup>13</sup>C NMR (75 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound **1**.



Figure S3.  $^{13}C$  NMR DEPT  $135^\circ$  (75 MHz,  $C_5D_5N)$  spectrum of compound 1.



**Figure S4.** <sup>1</sup>H, <sup>1</sup>H-COSY spectrum of compound **1**.



Figure S5. <sup>1</sup>H, <sup>13</sup>C-HSQC spectrum of compound 1.



**Figure S6.** <sup>1</sup>H, <sup>13</sup>C-HMBC spectrum of compound **1**.



**Figure S7.** <sup>1</sup>H, <sup>1</sup>H-NOESY spectrum of compound **1**.



Figure S8. HRESIMS (positive mode) spectrum of compound 1.



Figure S9.  $^{1}$ H NMR (500 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound 2.



**Figure S10.** <sup>13</sup>C NMR (75 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound **2**.



**Figure S11.** <sup>13</sup>C NMR DEPT 135° (75 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound **2**.



**Figure S12.** <sup>1</sup>H, <sup>1</sup>H-COSY spectrum of compound **2**.



**Figure S13.** <sup>1</sup>H, <sup>13</sup>C-HSQC spectrum of compound **2**.



Figure S14. <sup>1</sup>H, <sup>13</sup>C-HMBC spectrum of compound 2.



Figure S15. <sup>1</sup>H, <sup>1</sup>H-NOESY spectrum of compound 2.



Figure S16. HRESIMS (positive mode) spectrum of compound 2.



Figure S17.  $^{1}$ H NMR (500 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound 3.



Figure S18.  $^{13}\text{C}$  NMR (500 MHz,  $C_5D_5N)$  spectrum of compound 3.



Figure S19. <sup>1</sup>H, <sup>1</sup>H-COSY spectrum of compound 3.



Figure S20. <sup>1</sup>H, <sup>13</sup>C-HSQC spectrum of compound 3.



Figure S21. <sup>1</sup>H, <sup>13</sup>C-HMBC spectrum of compound 3.



Figure S22. <sup>1</sup>H, <sup>1</sup>H-NOESY spectrum of compound 3.



Figure S23. HRESIMS (positive mode) spectrum of compound 3.



Figure S24. <sup>1</sup>H NMR (500 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound 4.



Figure S25. <sup>13</sup>C NMR (75 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound 4.



Figure S26.  $^{13}$ C NMR DEPT  $135^{\circ}$  (75 MHz,  $C_5D_5N$ ) spectrum of compound 4.



**Figure S27.** <sup>1</sup>H, <sup>1</sup>H-COSY spectrum of compound **3**.



Figure S28. <sup>1</sup>H, <sup>13</sup>C-HSQC spectrum of compound 4.



Figure S29. <sup>1</sup>H, <sup>13</sup>C-HMBC spectrum of compound 4.



Figure S30. HRESIMS (positive mode) spectrum of compound 4.