Supplementary Information

The Role that Electrolytes Play in the Synthesis of Water-Soluble CdTe Quantum Dots Prepared at Ambient Temperature

Melissa S. Carvalho,^a Caroline Mayrinck,^a Ellen Raphael,^a Jefferson Bettini,^{b,#} Jefferson L. Ferrari^a and Marco A. Schiavon^{*a}

^aGrupo de Pesquisa em Química de Materiais (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei-MG, Brazil

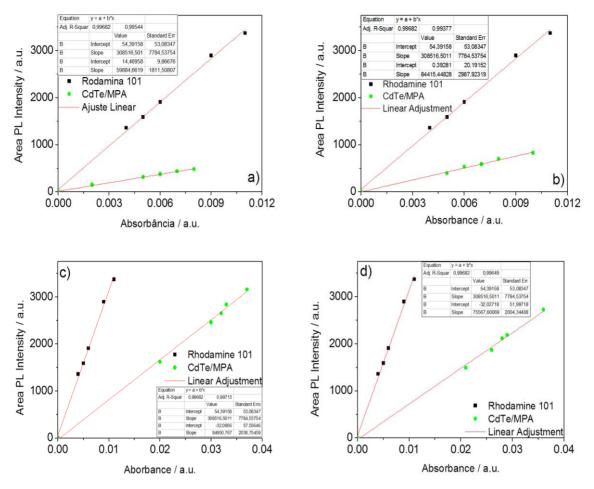
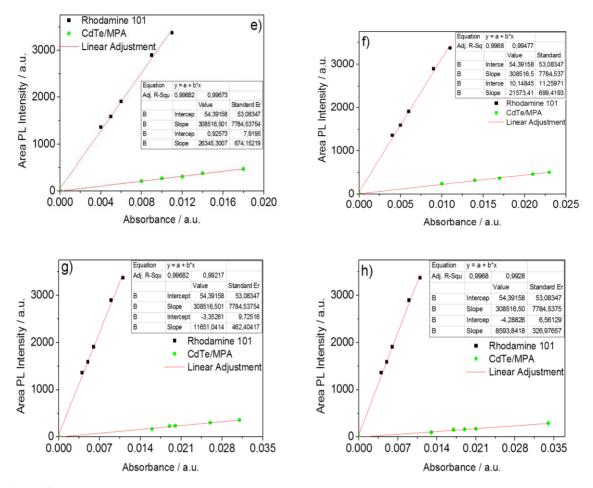
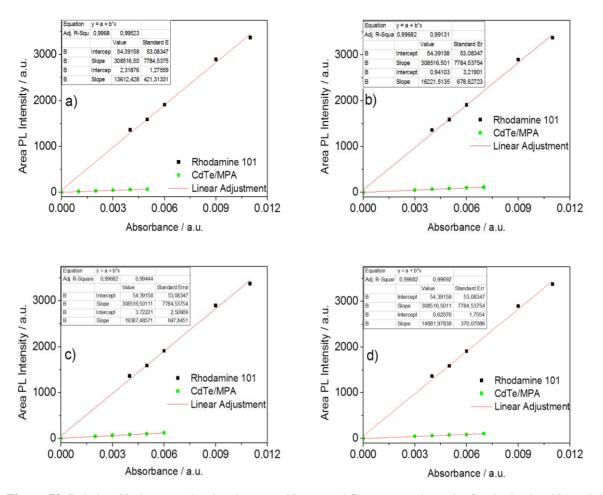
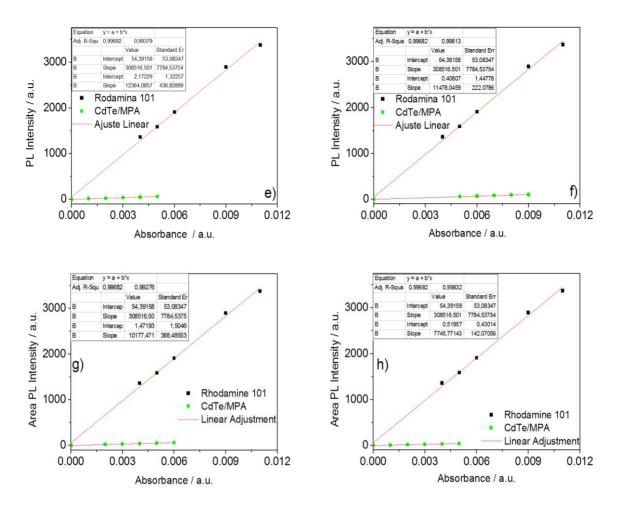

^bLaboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas-SP, Brazil

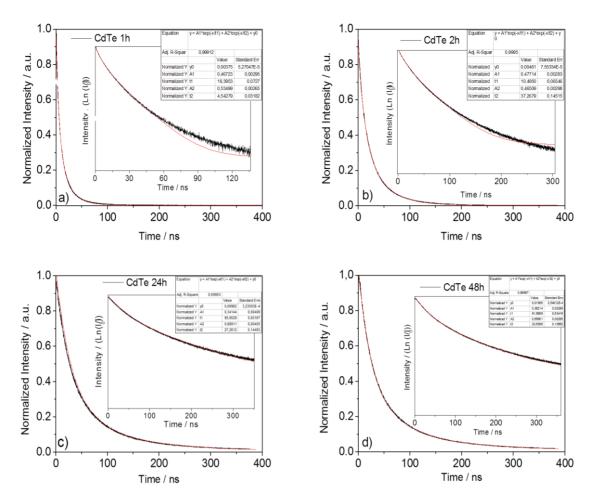
Table S1. Mean lifetimes of the MPA-CdTe QDs synthesized in the presence of N_2H_4 . H_2O at 5.0 and 10.0 mol L⁻¹

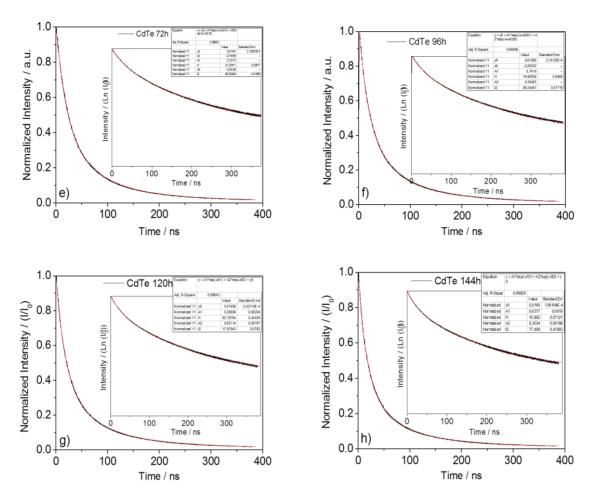

Synthesis time / h	Average lifetime N_2H_4 at 5.0 mol L ⁻¹ / ns	Average lifetime N_2H_4 at 10.0 mol L ⁻¹ / ns
1.0	9.17	33.39
2.0	19.09	60.06
24.0	43.33	74.43
48.0	39.53	50.68
72.0	36.93	61.96
96.0	35.26	64.65
120.0	32.89	68.17
144.0	28.67	63.31

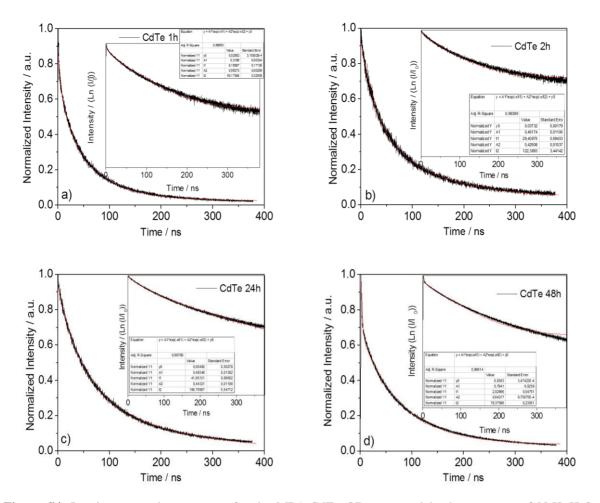
^{*}e-mail: schiavon@edu.ufsj.br


[#]Current address: Department of Materials, University of Oxford, Parks Rd, Oxford OX1 3PH, England.


Figure S1. Relationship between the absorbance and integrated fluorescence intensity for rhodamine 101 and the MPA-CdTe QDs prepared in the presence of N_2H_4 . H_2O at 5.0 mol L⁻¹ at (a) 1 h; (b) 2 h; (c) 24 h; (d) 48 h; (e) 72 h; (f) 96 h; (g) 120 h; and (h) 144 h of synthesis.


Figure S1. Relationship between the absorbance and integrated fluorescence intensity for rhodamine 101 and the MPA-CdTe QDs prepared in the presence of N_2H_4 .H₂O at 5.0 mol L⁻¹ at (a) 1 h; (b) 2 h; (c) 24 h; (d) 48 h; (e) 72 h; (f) 96 h; (g) 120 h; and (h) 144 h of synthesis (cont.).


Figure S2. Relationship between the absorbance and integrated fluorescence intensity for rhodamine 101 and the MPA-CdTe QDs prepared in the presence of N_2H_4 . H_2O at 10.0 mol L⁻¹ at (a) 1 h; (b) 2 h; (c) 24 h; (d) 48 h; (e) 72 h; (f) 96 h; (g) 120 h; and (h) 144 h of synthesis.


Figure S2. Relationship between the absorbance and integrated fluorescence intensity for rhodamine 101 and the MPA-CdTe QDs prepared in the presence of N_2H_4 . H_2O at 10.0 mol L^{-1} at (a) 1 h; (b) 2 h; (c) 24 h; (d) 48 h; (e) 72 h; (f) 96 h; (g) 120 h; and (h) 144 h of synthesis (cont.).

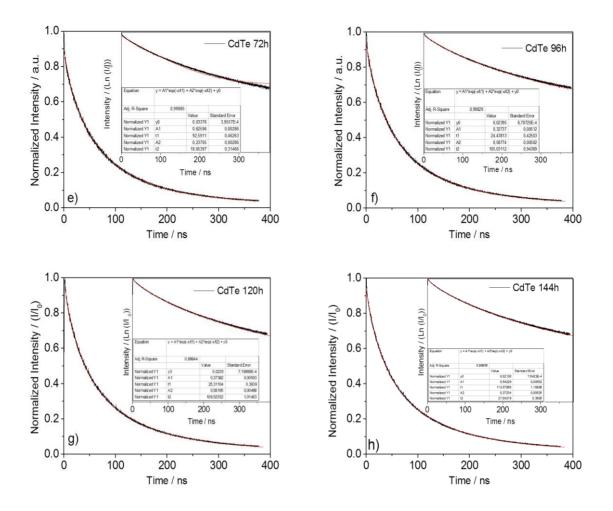

Figure S3. Luminescence decay curves for the MPA-CdTe QDs prepared in the presence of N_2H_4 . H_2O at 5.0 mol L⁻¹ at (a) 1 h; (b) 2 h; (c) 24 h; (d) 48 h; (e) 72 h; (f) 96 h; (g) 120 h; and (h) 144 h of synthesis.

Figure S3. Luminescence decay curves for the MPA-CdTe QDs prepared in the presence of N_2H_4 . H_2O at 5.0 mol L⁻¹ at (a) 1 h; (b) 2 h; (c) 24 h; (d) 48 h; (e) 72 h; (f) 96 h; (g) 120 h; and (h) 144 h of synthesis (cont.).

Figure S4. Luminescence decay curves for the MPA-CdTe QDs prepared in the presence of N_2H_4 . H_2O at 10.0 mol L⁻¹ at (a) 1 h; (b) 2 h; (c) 24 h; (d) 48 h; (e) 72 h; (f) 96 h; (g) 120 h; and (h) 144 h of synthesis.

Figure S4. Luminescence decay curves for the MPA-CdTe QDs prepared in the presence of N_2H_4 . H_2O at 10.0 mol L⁻¹ at (a) 1 h; (b) 2 h; (c) 24 h; (d) 48 h; (e) 72 h; (f) 96 h; (g) 120 h; and (h) 144 h of synthesis.

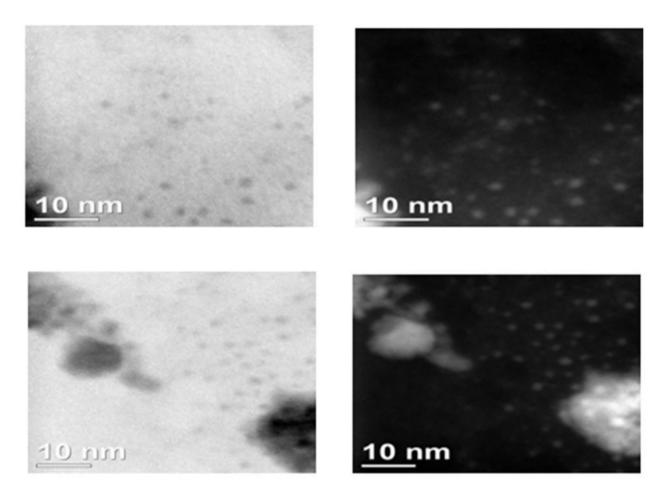
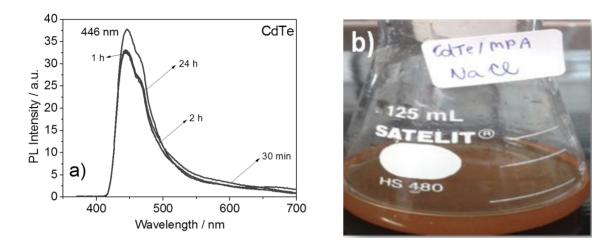



Figure S5. STEM images recorded for the MPA-CdTe nanocrystals prepared in this work.

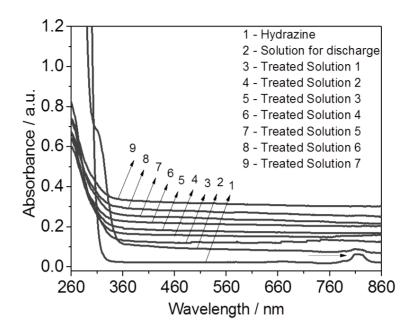

Figure S6. Photograph of the emission of MPA-CdTe QDs prepared in the presence of $NH_2CH_2CH_2NH_2$ at 5.0 mol L⁻¹.

Figure S7. (a) PL spectra of the material synthesized in the presence of NaCl at 5.0 mol L^{-1} and (b) photograph of the emission of the synthesized material.

Figure S8. Emission photographs for the temporal evolution of MPA-CdTe QDs synthesized in the presence of NH_4Cl . From left to right, aliquots were withdrawn from the reaction medium at 30 min and 6, 24, and 48 h of synthesis.

Figure S9. UV-Vis absorption spectra of the samples containing hydrazine before and after treatment, for further discharge into the environment.