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The peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that acts 
as a transcription factor, regulating glucose, lipid and inflammation signaling and it is exploited 
in type 2 diabetes treatment. However, the selective activation of this PPAR subtype has been 
linked to important adverse effects which can be mitigated through concomitant activation of 
PPARα and PPARδ. In this study, we proposed new PPARγ agonists using PharmaGist Server for 
pharmacophore prediction, the molecular docking was performed by GOLD (genetic optimization 
for ligand docking) v2.2, AutoDock 4.2 and AutoDock Vina 1.1 and QikProp v4.0 and Derek for 
absorption, distribution, metabolism, excretion and toxicity (ADMET) assessment. One molecule 
showed high predicted affinity to PPARγ and favorable pharmacokinetic and toxicity properties. It 
was then evaluated against PPARα and PPARδ and showed greater affinity to these receptors than 
the controls. Therefore this molecule is a promising drug lead for the development of derivatives 
and for the treatment of metabolic syndrome with the benefits of a PPAR pan activation.
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Introduction

The general cause of mortality among type 2 diabetes 
mellitus patients is due to dyslipidemia leading to 
cardiovascular complications. Currently, the drugs used to 
control these disorders act separately either on reducing 
blood glucose or lowering triglyceride levels, free fatty acid 
and low-density lipoprotein. However, the increasing number 
of cases of patients with diabetic metabolic syndrome 
requires the development of therapies that act simultaneously 
reducing glicidic and lipidic levels in a combined effort to 
ease cardiovascular disorders.1 Peroxisome proliferator-

activated receptors (PPARs) are nuclear receptors that act 
as transcription factors, regulating glucose homeostasis, 
lipid metabolism and inflammation signaling, making them 
attractive targets for the development of new therapies for 
metabolic syndromes. They regulate the expression of target 
genes after forming a heterodimer with 9-cis-retinoic acid 
receptor (RXR) and bind to the peroxisome proliferators 
response elements (PPRE) in the regulatory region of the 
target gene. The increased transcriptional rates of their target 
genes may be increased after interaction with an agonist 
ligand which alters the conformation of PPAR, exposing the 
DNA (deoxyribonucleic acid) binding site. Three distinct 
receptors have already been described, PPARα, PPARδ 
and PPARγ.2
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PPARγ plays an important role in the regulation of 
glucose and lipid metabolism and it is widely distributed in 
adipose tissue.3,4 In adipocytes, the PPARγ activity regulates 
the expression of genes involved in lipid metabolism,5-7 in 
addition to the control of the expression of proteins involved 
in the uptake of lipids by adipocytes.8 The PPARγ activation 
in adipose tissue presents an indirect activity in tissues 
which respond to insulin.9 This effect was demonstrated 
using the drug rosiglitazone, a known PPARγ activator, 
in an experiment that showed that the drug is capable 
of increasing the insulin sensitivity of mice with severe 
insulin resistance but had no effect in mice with absence 
of adipose tissue.10

Thiazolidinediones are PPARγ agonist drugs used 
for treatment of patients with type 2 diabetes mellitus. 
Thiazolidinediones can modulate gene expression that 
increases insulin sensitivity in peripheral tissues causing a 
reduction in blood glucose.11 In the United States market, 
three thiazolidinediones, troglitazone, pioglitazone and 
rosiglitazone, were introduced. Troglitazone presented 
dangerous hepatotoxicity profile and was removed from 
the market. Whereas pioglitazone and rosiglitazone are 
still marketed, however, recent studies indicated that 
rosiglitazone is associated with body weight gain, increased 
risk of myocardial infarction and death from cardiovascular 
causes.12-14 These adverse effects are related to the selective 
activation of PPARγ. The literature also presents results 
of drugs that are able to activate concomitantly PPARα, 
PPARβ/δ and PPARγ, this combined activation was able 
to avoid the adverse effects caused by the PPARγ selective 
activation.15

PPARα is present mainly in muscle, heart and liver and 
play a role in hepatic lipid and lipoprotein metabolism. 
PPARα agonist drugs, the fibrates, are used as hypolipidemic 
agents. PPARδ is widely distributed throughout the tissues16 
and their activation is related in overall energy regulation 
and fatty acid oxidation, and is able to increase high-density 
lipoprotein cholesterol levels in diabetic mice and obese 
rhesus monkeys models.17 PPARδ selective agonists can 
reduce weight gain in mice18 and may counteract the effects 
of selective PPARγ activation.

Drugs, which activate all three PPAR subtypes, cause 
effects in different tissues at the same time, and are able 
to control blood glucose levels by increasing glucose 
metabolism, and also control dyslipidemia, reducing the 
concentration of triglyceride, free fatty acid, low-density 
lipoprotein and increase the concentration of high-density 
lipoprotein in the blood. These effects also prevents the 
formation of atherosclerotic plaques and therefore reduces 
cardiovascular risks.14,19 Moreover, the effects associated 
with selective activation of PPARγ, such as the weight gain, 

are not observed.20 Some PPAR pan agonists have entered 
clinical trials and show a promising field of research in the 
development of new drugs to treat metabolic syndrome.21-23

In this study, we aimed to propose new drug candidates 
for the treatment of the metabolic syndrome originated 
from type 2 diabetes. For that, we studied available PPARγ 
ligands in order to determine their pharmacophore groups 
through PharmaGist Server. Then, we made docking 
studies of PPARγ binding pocket using the software 
GOLD (genetic optimization for ligand docking) v2.2 to 
determine its binding mode with known ligands. From 
this study, we proposed new molecules that can activate 
PPARγ. The interaction of our proposals with PPARγ was 
also assessed with AutoDock 4.2 and AutoDock Vina 1.1.2. 
Thus, we predicted pharmacokinetic and toxicity properties 
of the new proposes with QikProp v4.0 software and 
Derek software for Windows v10.0.2. The molecules with 
higher docking scores were also docked against PPARα 
and PPARδ in order to evaluate the PPAR pan agonism.

Experimental

Selection of protein structure and ligands

The structure of the heterodimer RXRα/PPARγ, PPARα 
and PPARδ resolved by X-ray diffraction was downloaded 
from the Protein Data Bank with PDB codes 1RDT,24 
4BCR25,26 and 3OZ0,27 with resolution of 2.4; 2.5 and 3.0 Å, 
respectively. The ligands were downloaded at Binding 
DB server, their CID are: 18944089, 446642, 9843045, 
10578809, 77999, 10433070, 44383664, 10004390, 
44385396, 10068664, 9827261, 44419783, 11464352, 
447458, 44345164, structures of each ligand is displayed 
in Figure 1 and their physicochemical properties are shown 
in Supplementary Information section, see Table S1.

The ligands and protein structure for pharmacophore 
prediction and docking were prepared using the softwares 
Discovery Studio 4.1 and DS Viewer Pro 6.0, removing 
RXRα domain and the water molecules. The ligands for 
docking validations were downloaded with the proteins 
crystal structures. The agonists controls of PPARγ, PPARα 
and PPARδ were rosiglitazone (CID 77999), tesaglitazar 
(PDB 1I7I)28 and TIPP204 (PDB 2ZNP),29 respectively.15

Pharmacophore prediction

Fifteen known ligands of PPARγ were chosen in order 
to assess what these molecules have in common that 
allow their binding to the receptor, the pharmacophoric 
groups and features. We chose these ligands based on 
their affinity constants (Ki) that ranged from 0.4 to 100 
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and were submitted to the PharmaGist server analysis that 
determined those features.

Docking study with GOLD 

The docking of the Binding DB ligands and our 
proposed molecules was performed by GOLD software 
(version 2.2) with default parameters. The population size 
was 100, selection-pressure 1.1, the number of operations 
was 10,000, the number of islands was 1, the niche size 
was 2, operator weights for migrate was 0, mutate was 
100, and crossover was 100. The coordinates X = 8.2731, 
Y = 33.1955 and Z = 7.9396 from the pocket of interest 
was chosen based on interactions between the amino acids 
and the pharmacophore predicted, and a 10 Å radius sphere 

was defined. Ten solutions were calculated for each ligand 
and the GOLD score was analyzed.

Docking study with AutoDock 4.2/Vina 1.1.2 and PyRx 0.8

For docking studies among subtypes of PPAR, 
their specific ligands and proposal molecules, we 
used the software AutoDock 4.2/Vina 1.1.2 and PyRx 
0.8.30 Specific ligands and proposed molecules were 
optimized in PyRx. The coordinates for PPARγ was 
X = 8.2731, Y = 33.1955 and Z = 7.9396, for PPARα 
was X = –18.9740, Y = –3.8990 and Z = 46.1490 and 
for PPARδ was X = –0.6700, Y  =  –12.2640 and Z = 
48.0570. The coordinates were chosen according to the 
interaction between the PPAR and its standard agonists. 

Figure 1. PPARγ ligands selected. PC CID code was described. The first molecule can be found in PPARγ receptor crystallography and was the pivot 
molecule for docking and pharmacophore studies.
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The energy score function was used to assess the binding 
free energy of interactions between protein and ligand.30 
A visual analysis of the poses was also taken into 
account for the selection of the best free binding energy. 
Interactions of ligands and receptor were performed in 
Discovery Studio 4.1 with default parameters.

Absorption, distribution, metabolism, excretion and toxicity 
(ADMET) predictions

The pharmacokinetic features of the new proposed 
molecules were evaluated using QikProp v4.0 software. 
The range considered acceptable for the different 
parameters comprises 95% of the drugs. For the prediction 
of toxicity, Derek software for Windows v10.0.2 was 
used. The programs were used with default parameters. 
The combination of the softwares can predict important 
properties such as absorption, distribution, metabolism, 
excretion and toxicity groups that constitute the structures 
of the molecules.

Results 

Pharmacophore prediction of PPARγ ligands

The known ligands of PPARγ were chosen from the 
Binding DB web server and selected in a range of affinity 
constant (Ki) from 0.4 to 100 in order to provide structural 
variety that can support and validate the methods hereby 
employed to propose new ligands for this nuclear receptor. 
Then, all molecules were submitted to the PharmaGist web 
server in order to determine which chemical groups that 
these molecules have in common and are responsible for 
the biological interaction with the receptor.

Twelve out of the sixteen test molecules presented what 
the PharmaGist identified as the pharmacophoric group with 
a score of 29.047 (Figure 2). The pivot molecule chosen 

for the PharmaGist input was the crystallographic molecule 
1RDT, its outputs shown in Figure 2a. The pharmacophoric 
group is composed of a lipophilic ring followed by another 
lipophilic group (blue) containing a hydrogen acceptor 
(green) (Figure 2). We also observed, in the superposition 
of the test ligands using DS Visualizer 4.1, spatial features 
comprising angles that most of the test molecules formed 
between the pharmacophoric group (Figure 2b) and the 
side chain.

Docking studies of PPARγ and selective ligands

In order to validate the docking method, the molecule 
with crystallographic information was submitted to docking 
until the folding found by the software was similar to the 
crystallographic information. The best result can be seen 
in Figure 3a. The primary interaction sites are around the 
alpha helix between the amino acids residues 278 and 
294 which is where the crystallographic molecule is fold 
around, the docking method identified a conformation that 
allows the molecule also to interact with a loop between 
the amino acids 339 and 349. Some interactions may also 
take place in the helix between 333 and 323. The validation 
was accepted despite the minor deviation due to the fact 
that both crystallographic poses are possible and the pose 
found does not invalidate the other.

The PPARγ  l igands selected in Binding DB 
presented interactions around the same alpha helix as the 
crystallographic molecule. They also presented overlapping 
of the predicted pharmacophore groups indicating that in 
fact these groups are important for the interaction with the 
protein. Importantly, the twist of the molecules observed 
in the prediction of pharmacophore was observed in the 
docking, indicating that it is also relevant for interaction 
(Figure 3b). Therefore, both the pharmacophore groups 
and the angulation of the molecule will be preserved for 
the development of new activators of PPARγ.

Figure 2. Pharmagist superposition of the test molecules based on its pharmacophoric site. Blue spheres represents lipophilic rings and green sphere show 
a hydrogen acceptor from pharmacophoric group.
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New proposed ligands obtained better GOLD score than 
crystallographic molecule

It is known that the hydrophobic tail of PPAR agonists 
may bind to the residues in the active site of the protein 
and the polar heads can interact with tyrosine residues 
producing activation effect. Such interactions give 
specificity to the molecule for the PPAR subtype, and 
changes in these regions may change this selectivity.15

Based on these reports and the pharmacophoric and 
conformational information previously obtained, we 
proposed seven new ligands for PPARγ, maintaining 
the torsion of the molecule and pharmacophoric groups, 
and altering the polar head groups and hydrophobic tail 
(Figure 4a). Then, they were inserted in GOLD software 
in order to predict its conformation inside the binding site 
and docking score. The candidates were docked along 
with the crystallographic 1RDT molecule, also used in the 

validation, to provide an internal control of the method. 
Candidate 1, candidate 2 and candidate 7 obtained the 
highest GOLD scores, 91.46, 70 and 96.19, respectively, 
while crystallographic molecule 1RDT obtained 85.61 
(Supplementary Information section, see Table S2). The 
best poses are shown in the Figure 4b. The molecules follow 
the same folding pattern as they bypass the 278-294 helix 
and reach the space near the 339-349 loop with the 323-333 
helix on the back, indicating that can also bind and activate 
PPARγ. A closer look at the interactions between these 3 
molecules and the protein are depicted in the Figure 4b.

Docking of candidates with PPARα, PPARδ and PPARγ 
subtypes

In order to evaluate whether the changes made would 
present a higher binding affinity than the specific ligand 
for each PPAR subtypes, we docked each subtype, its 

Figure 3. (a) Comparison between the crystallographic 1RDT molecule (red) and the best pose from GOLD docking software (green); (b) result of GOLD 
docking of selected Binding DB ligands and PPARγ. The six best ligands are shown. 1RDT (green), CID77999 (pink), CID446642 (red), CID9827261 
(yellow), CID10578809 (blue) and CID18944089 (black).
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specific ligand and candidates 1, 2 and 7 in AutoDock/Vina 
software. Autodock validation is shown in Figure 5. We 
observed that candidates 1 and 2 showed higher binding 
affinity to PPARα than tesaglitazar (PDB1I7I), a known 
agonist of this subtype, but candidate 7 showed lower 
affinity (Figure 6 and Supplementary Information section, 
see Table S3). The candidate 1 showed higher affinity for 
PPARδ than the molecule TIPP204 (PDB 2ZNP) a ligand 
that was crystallographed with this receptor. However, 
candidates 2 and 7 showed lower affinity. For PPARγ 
subtype, the three evaluated candidates had higher affinity 
than the agonist rosiglitazone (CID 77999), see Figure 6. 
We can also observe higher number of interactions 
of candidate 1 with the receptors than the specific 
ligands, corroborating the binding affinity predictions 
(Figure 6 and Table 1). With these data, we propose 
that the candidate 1 is capable of binding to three PPAR 
subtypes with greater binding affinity than their known  
activators.

Proposed molecules presents favorable pharmacokinetics 
and toxicity predictions

The candidates 1, 2 and 7 were submitted to the QikProp 
software in order to predict its pharmacokinetics. Candidate 1 
presented only 1 Lipinski violation, on log P with a 6.3 value, 
a consequence of the high log P was a low aqueous solubility, 
log S of −7.6, below the QikProp criteria (−6.5 to 0.5). The 
percentage of human oral absorption in gastrointestinal (GI) 
stood out with a 94% value, other absorption parameters such 
as Caco-2 permeability and Madin-Darby canine kidney 
(MDCK) permeability were considered in range for QikProp 
criteria. Candidate 1 presented number of stars of 2 which 
is in range to be considered a “drug-like” molecule (0-5, 0 
being ideal). Candidate 2 presented a high Caco-2/MDCK 
permeability and percentage of human oral absorption in 
GI of 100%. No Lipinski violations was found but QikProp 
identified 10 possible metabolites for candidate 2 which 
is above the software range (1-8) and also presented 2 

Figure 4. (a) Proposed ligands with changes in polar head and hydrophobic tail; (b) result of GOLD docking. Proposed ligands with higher GOLD score 
are shown with the best poses. 1RDT (green), candidate 1 (pink), candidate 2 (blue) and candidate 7 (red).
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stars of drug likeliness. Another feature that stood out for 
candidate 2 is its similarity with other PPARγ activator, the 
troglitazone (79.51% similarity). Candidate 7 also presented 
a low aqueous solubility –7.8 (–6.5 to 0.5), nine predicted 
metabolite (1-8) and 2 Lipinski violations. Its oral absorption 
(56%) was the lowest among the candidates and presented 
the number of stars of drug likeliness of 3.

Candidates 1, 2 and 7 were also submitted to Derek 
toxicity prediction software as another resource to choose 
a safer candidate to the synthesis. Candidate 1 presented 
the lowest toxicity between the candidates; the only 
output available in Derek was the ability to activate the 
peroxisome proliferation. Candidates 2 and 7 both present 
a thiazolidinedione group which is a known hepatotoxic 
group. However, there are thiazolidinediones currently 
in the market and this characteristic does not hinder the 
continuity of these candidates. The main issue is that 
the candidate 7 presented also genotoxicity due to the 
occurrence of a vinyl ketone group that is a considerable 
issue that should be taken into account.

Discussion

Molecular features

The PharmaGist analysis provided insightful 
information on the pharmacophoric group and other 

Figure 5. AutoDock validation of (a) PPARα (PDB 4BCR); (b) PPARδ (PDB 3OZ0); (c) PPARγ (PDB 1RDT) with respective crystallographic molecules. 
Crystallographic molecules (red) and the best pose from AutoDock (green) are shown.

Figure 6. Binding affinity provided by AutoDock/Vina software of the 
best candidates and standard agonists. Ligand control for PPARα, PPARδ 
and PPARγ were tesaglitazar, TIPP204 and rosiglitazone.
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spatial features about the molecule folding. It can be seen 
in Figure 2 that a molecule intended to be active on this 
binding pocket should be able to fold around the alpha 
helix 278-294, where the pharmacophoric group will bind. 
Viewing the PharmaGist superposition output in DS Viewer 
we were able to observe that most of the test molecules 
have a folding characteristic that should be explored in drug 
candidates. The docking validation was accepted and the 
protein structures that interacted with the test molecules 
were similar to the ones found in a previous rosiglitazone 
interaction study which were His 323, His 449, Tyr 327, 
Tyr 473, Lys 367 and Ser 289.14 Following the 2 rings 
that form the pharmacophoric group, the folding of the 
molecules occurs through an aliphatic oxygen or nitrogen 
that provides an angle to the following chain. This pattern 
is repeated in the majority of the test molecules. These 
features which provided the interaction between the ligands 
and PPARγ were maintained in the development of new 
molecules but polar head and hydrophobic tail varied, for 
the purpose of identifying molecules which interact with 

the three PPAR subtypes tested. Thus, we detected three 
candidates that maintained good binding affinity to PPARγ, 
and the candidate 1 also shows binding affinity to PPARα 
and PPARδ.

Candidates outcome

The GOLD docking was used to select the most viable 
candidates among the proposals. In this test, candidates 1 
and 7 stood out scoring above 90 in the test, even more than 
the crystallographic molecule 1RDT which scored around 
85. Candidate 2 obtained 70 GOLD score and was selected 
too. When the binding affinity of selected candidates 
was compared with rosiglitazone, all of them obtained a 
better score, indicating that they maintained good binding 
affinity to PPARγ. Comparing the binding affinity of these 
candidates with tesaglitazar (PPARα agonist) and TIPP204 
(PPARδ ligand), the candidate 1 stood out presenting a 
higher score then all of these selective ligands. However, 
the candidate 2 showed an affinity better then the controls 

Figure 7. Interactions of candidate 1 with: (a) PPARα; (b) PPARδ; (c) PPARγ. Green lines are hydrophobic interactions alkyl or Pi-alkyl. Orange lines 
are Pi-sulfur interactions. Blue lines are hydrogen bonds and pink lines are Pi-Pi interactions. Nominal interactions, aminoacids and distances can be seen 
in Table 1.
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Table 1. Interactions between candidate 1 and specific ligands with PPARs

Molecule Aminoacid Distance / Å Type

Candidate 1 vs. PPARα LEU331 1.87 hydrogen bond

MET330 3.73 pi-sigma

CYS276 4.36 pi-sulfur

MET355 5.18 pi-sulfur

VAL444, LEU456, LEU460, 
CYS276, ILE354, MET355, PHE273, 
VAL324, LEU321, ILE317, CYS276, 

ILE354, CYS276

3.49-5.44 alkyl

1I7I vs. PPARα HIS440 2.08 hydrogen bond

HIS440 3.32 hydrogen bond

SER280 2.95 unf acceptor-acceptor

THR279 3.86 pi-sigma

CYS276, LEU321, VAL324 4.54-5.13 pi-alkyl

Candidate 1 vs. PPARδ THR292 2.44 hydrogen bond

CYS285 2.29 unf donor-donor

THR288 3.45 pi-sigma

LEU339 3.99 pi-sigma

LEU339 3.39 pi-sigma

CYS285 3.87 pi-sulfur

PHE368 5.03 pi-pi t-shaped

MET228, MET329, LEU330, 
ILE333, LYS367, ILE363, ILE364, 

LEU330, VAL341, MET228

4.70-5.38 alkyl

TIPP204 vs. PPARδ ARG284 3.37 halogen (fluorine)

LEU330 3.43 pi-sigma

VAL341 3.96 pi-sigma

LEU255, VAL281, VAL348, 
MET453, LEU469

3.74-5.11 alkyl

CYS285, LYS367, VAL281, 
ARG284, CYS285, VAL348

4.83-5.41 pi-alkyl

Candidate 1 vs. PPARγ HIS449 2.16 hydrogen bond

HIS449 3.54 carbon hydrogen bond

TYR327 2.98 carbon hydrogen bond

CYS285 3.97 pi-sulfur

MET364 5.42 pi-sulfur

PHE363 3.91 pi-pi stacked

PHE282 4.94 pi-pi t-shaped

ARG288, ILE281, CYS285, MET348 4.33-5.01 alkyl

CYS285, CYS285, ARG288, 
LEU330, CYS285, ARG288, ILE341

4.16-5.23 pi-alkyl

Rosiglitazone vs. PPARγ SER289 3.65 carbon hydrogen bond

CYS285 3.64 carbon hydrogen bond

TYR327 3.63 carbon hydrogen bond

HIS449 3.67 carbon hydrogen bond

CYS285 3.65 pi-sigma

CYS285 4.25 pi-sulfur

MET364 5.49 pi-sulfur

PHE360 5.80 pi-sulfur

PHE282 4.42 pi-pi stacked

PHE363 5.41 pi-pi t-shaped

CYS285, LEU453 5.01-5.31 pi-alkyl
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for PPARα and PPARγ, therefore it is also a promising 
candidate. Candidate 7 presented a high and selective 
activity to PPARγ, which is an unwanted feature due to the 
toxicity that this selective interaction may provide.

Pharmacokinetics and toxicity issues are responsible for 
50% of a molecule discontinuity and these studies should 
be assessed early in the drug development in order to avoid 
unnecessary investment.31 The Derek software did not 
found important toxicity for the candidate 1. Candidate 2 
showed an expected toxicity due to its thiazolidinedione 
group which is known to cause hepatotoxicity, however 
it does not hinder its continuity forward to synthesis and 
in  vitro/in vivo tests to determine the extension of this 
toxicity as the thiazolidinedione group is also present in 
molecules that have already reached the market.32,33

Candidate 7 not only presented the thiazolidinedione 
known toxicity but also chromosome toxicity due to the 
vinyl ketone group, which reacts with guanine in DNA, 
causing genotoxic effects.34 This toxicity profile allied 
with the selective and strong activation of PPARγ make 
this candidate unviable for further tests.

The pharmacokinetics of candidates 1 and 2 presented 
good oral absorption and 2 stars on QikProp criteria to 
describe drug likeliness, comparing both these candidates, 
candidate 2 stood out with a better aqueous solubility 
and no Lipinski’s rule flaw, however it presents many 
routes of metabolism with 10 predicted metabolites, 
which may lead to variability on toxicity/activity of these 
metabolites and also, many metabolic pathways may lead 
to a high clearance and therefore low half-life which may 
limit its dose regimen. Candidate 7 presented the most 
undesirable pharmacokinetics characteristics presenting 
low aqueous solubility, 2 Lipinski flaws and 9 possible 
metabolites. It also presented 56% oral absorption, lower 
than candidates 1 and 2 (94 and 100%, respectively).

A new lead molecule

There is a tendency for the treatment of metabolic 
disease to develop drug candidates that activate the 3 PPARs 
in order to avoid the adverse effects observed in single or 
dual activators, like the glitazars that had a few analogs 
such as muraglitazar, tesaglitazar, ragaglitazar, TAK559 
and KRP297 that stopped in clinical trials by FDA due to 
side effects, mainly hepatotoxicity.35,36

The glitazars, activators of PPARα and PPARγ have also 
been researched for the activation of PPARδ, as happened 
recently with chiglitazar37 that demonstrated low toxicity 
compared with selective PPARγ or dual agonists and 
was able to advance to phase 3 in clinical trials. Besides 
chiglitazar, LYSO-07 designed initially as a PPARγ agonist 

also presented PPARα and PPARδ activation, this PPAR 
pan agonism boosted its research.38,39 Other molecules like 
ZBH and CNX-013-B2 also were researched for a PPAR 
pan agonism which is considered by the researchers a 
characteristic that may represent a promising adverse effect 
profile in in vivo studies.40,41

Candidate 1 herein presented is a molecule similar to 
LY465608, used as a lead structure in PPAR pan agonists 
design. However, it was halted from clinical trials due to 
hepatotoxicity presented in animal models.35,42-44 Despite 
the structural similarity, candidate 1 did not show predicted 
hepatotoxicity in Derek software and, just like previous 
drug candidates leaded by LY465608,35 we obtained a 
molecule with higher affinity to the receptors than their 
specific agonists, therefore the candidate 1 demonstrates 
potential to figure as an innovative drug candidate to either 
lead the proposals of new PPAR pan ligands or even be 
synthesized and go further to in vitro/in vivo studies.

Conclusions

In conclusion, candidate 1 showed higher binding 
affinity than specific ligands for PPARα/γ/δ, favorable 
pharmacokinetic and toxicological parameters, leading 
this molecule to figure as an efficient drug candidate that 
can control blood sugar, decrease free fatty acid, and low-
density lipoprotein concentration, increase high-density 
lipoprotein concentration, reduce cardiovascular diseases 
without the adverse effects from PPARγ selective agonists. 
Due to the rise of PPAR pan agonists, the candidate 1 
represents a new lead to develop molecules with this 
promising characteristic and even advance to in vitro/in vivo  
studies.

Supplementary Information

PharmaGist server (http://bioinfo3d.cs.tau.ac.il/pharma/
index.html) were used for pharmacophore prediction. The 
GOLD Score of candidates, crystallographic molecule 
1RDT and PPARγ ligands docked with PPARγ receptor, 
binding affinity of candidates 1, 2 and 7 and specific PPAR 
ligands was assessed with AutoDock/Vina software and 
calculated physicochemical properties are available free 
of charge at http://jbcs.sbq.org.br as PDF file.
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