J. Braz. Chem. Soc., Vol. 27, No. 10, S1-S10, 2016. Printed in Brazil - ©2016 Sociedade Brasileira de Química 0103 - 5053 \$6.00+0.00

Preparation of Two Maleic Acid Sulfonamide Salts and Their Copper(II) Complexes and Antiglaucoma Activity Studies

Cengiz Yenikaya,^{*,a} Halil İlkimen,^a Mehmet Melih Demirel,^a Burçin Ceyhan,^a Metin Bülbül^b and Ekrem Tunca^b

^aDepartment of Chemistry and ^bDepartment of Biochemistry, Faculty of Arts and Sciences, Dumlupinar University, 43100 Kütahya, Turkey

Figure S1. ¹H NMR spectra (500 MHz, DMSO-*d*₆) of compound 4; (a) in DMSO, (b) in DMSO with D₂O.

^{*}e-mail: cengiz.yenikaya@dpu.edu.tr

Figure S2. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆) of compound 4.

Figure S3. SDS PAGE analysis of purified isozymes.

Figure S4. ¹H NMR spectra (500 MHz, DMSO-*d*₆) of compound 6; (a) in DMSO, (b) in DMSO with D₂O.

Figure S5. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆) of compound **6**.

Figure S6. ¹H NMR spectra (500 MHz, DMSO-*d*₆) of compound 9; (a) in DMSO, (b) in DMSO with D₂O.

Figure S7. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆) of compound 9.

Figure S8. TG-DTG and DTA curves of 4.

Figure S9. TG-DTG and DTA curves of 6.

Figure S10. TG-DTG and DTA curves of 7.

Figure S11. TG-DTG and DTA curves of 9.

Figure S12. TG-DTG and DTA curves of 10.

Table S1. IR spectral data of 3-10

	3 / cm ⁻¹	5 / cm ⁻¹	8 / cm ⁻¹	4 / cm ⁻¹	6 / cm ⁻¹	7 / cm ⁻¹	9 / cm ⁻¹	10 / cm ⁻¹
v(OH)	2900(br)	_	_	3484(br)	_	3428(br)	3435(br)	3447(br)
v(NH ₂)	3352(m) 3263(m) 3212(m)	3447(m) 3307(m)	3349(m)	3355(m) 3306(m) 3240(m)	3432(m) 3303(m)	3351(m) 3232(m)	335(m) 3322(m) 3266(m)	3312(m) 3103(m)
$\nu(NH)^{\scriptscriptstyle +}$	_	-	-	-	2707(w) 2549(w)	-	2757(w) 2586(w)	-
$\nu(CH)_{Ar.}$	3068(w)	3073(w)	3061(w)	3098(w)	3083(w)	3062(w)	3066(w)	3050(w)
$\nu(C=O)_{amit}$	1630(w)	-	-	1654(s)	1633(s)	1659(s)	1626(s)	1602(s)
$\nu(C=O)_{asit}$	1695(s)	-	-	1691(s)	1677(s)	1692(s)	1668(s)	1668(s)
v(C=N) v(C=C)	1549(s) 1496(s) 1468(s) 1425(s) 1401(s)	1601(s) 1561(s) 1492(s) 1443(s)	1626(s) 1582(s) 1544(s) 1455(s)	1606(s) 1590(s) 1530(s) 1496(s) 1443(s)	1581(s) 1561(s) 1496(s) 1408(s)	1590(s) 1529(s) 1442(s)	1625(s) 1606(s) 1525(s) 1455(s) 1439(s)	1561(s) 1542(s) 1509(s) 1467(s)
v(S=O)	1397(s) 1317(s) 1193(s) 1093(s)	_	_	1402(s) 1365(s) 1151(s) 1092(s)	1368(s) 1333(s) 1161(s) 1094(s)	1401(s) 1367(s) 1148(s) 1091(s)	1409(s) 1312(s) 1169(s) 1095(s)	1353(s) 1297(s) 1181(s) 1117(s)
$\nu(Py)$	_	751(s)	_	_	768(s)	732(s)	_	_
v(M–O)	_	_	_	541(w)	_	537(w)	_	555(w)
v(M-N)	-	_	_	_	_	438 (w)	_	476(w)

w: weak; m: medium; s: strong; br: broad.

Table S2. Thermal analyses results of compounds 4, 6, 7, 9 and 10

Compound	Temperature / °C	DTG _{max} / °C	Leaving group	Found / %	Calculated / %
4	30-180	124	2H ₂ O	5.60	5.64
	200-324	200, 291	$2SO_2NH_2$	25.00	25.08
	324-720	386, 460	$C_{20}H_{14}N_2O_6$	58.35	59.32
	_	_	Cu	10.05	9.96
6	30-358	184, 295	$C_5H_9N_3O_2S$	48.00	48.08
	358-600	552	$C_{10}H_7NO_3$	52.00	52.02
7	30-128	122	ОН	3.20	3.10
	128-377	196, 289	2AP	35.00	34.99
	377-600	401, 458	SAMAL	50.20	50.10
	_	_	Cu	11.60	11.81
9	30-112	84	H_2O	4.40	4.43
	112-375	146, 238, 323, 371	$C_7 H_{10} N_3 O_2 S$	49.20	49.27
	375-900	550	$C_{10}H_7NO_3$	46.40	46.30
10	30-115	62	H_2O	2.60	2.44
	115-355	317, 342	$C_{12}H_{13}O_5$	32.50	32.43
	355-750	359	$C_{12}H_{13}N_6O_5S$	47.70	47.90
	-	-	Cu	17.20	17.23

Compound	DMSO / (nm (mol $L^{-1})^{-1}$ cm ⁻¹)			
3	327(43400)			
	303(43400)			
4	310(42100)			
	285(25400)			
	765(89)			
5	367(380)			
	284(13630)			
6	315(37760)			
	309(31090)			
7	301(36700)			
	241(4150)			
	764(75)			
8	301(43400)			
	290(33540)			
9	303(48170)			
	290(33540)			
10	292(2500)			
	283(3880)			
	757(80)			

Table S3. Optical properties for 3-10 DMSO

Table S4. Purification data of hCA I and hCA II isozymes

Purification step		Activity / (EU mL ⁻¹)	Total volume / mL	Protein / (mol L ⁻¹)	Total protein / mg	Total activity / EU	Specific activity / (EU mL ⁻¹)	Yield / %	Purification factor
Hemolysate		122.3	50	11.24	562.0	6115.0	10.88	100	1
Sepharose 4B-L-tyrosine	hCA I	468.4	5	0.51	2.55	2342.0	918.4	38.30	84.40
chromatography	hCA II	698.1	5	0.34	1.70	3490.5	2053.2	57.08	188.71