Cholinesterases Inhibition by Novel *cis*- and *trans*-3-Arylaminocyclohexyl *N*,*N*-Dimethylcarbamates: Biological Evaluation and Molecular Modeling

Diego A. S. Yamazaki,^a Augusto A. Cândido,^a Mariane C. Bagatin,^a Miguel Machinski Jr.,^b Simone A. G. Mossini,^b Rodrigo M. Pontes,^a Fernanda A. Rosa,^a Ernani A. Basso^a and Gisele F. Gauze^{*,a}

^aDepartamento de Química and ^bDepartamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá-PR, Brazil

Table S1. Yields, physical aspect and melting points of 3-arylaminocyclohexanones (2a-2c)

Table S2. Yields, physical aspect and melting points of cis and trans 3-arylaminocyclohexanols (3a-3c; 4a-4c)

3a-3c

2a-2c

4a-4c

(ii) NaBH₄, THF, r.t., 48 h; (ii') N-selectride, THF, -80 °C, 4 h. Х Yield / % Compound Physical aspect Melting point / °C 3a Н 84 brown oil 3b F 75 brown oil _ brown oil 3c OCH₃ 80 4a Н 72 white solid 58.4-58.6 F brown solid 4b 80 71.2-73.5 4c OCH₃ 85 white solid 75.5-75.9

*e-mail: gfgbandoch@uem.br

Table S3. Yields, physical aspect and melting points of cis and trans 3-arylaminocyclohexyl N.N-dimethylcarbamates (5a-5c; 6a-6c)

3a-3c

'N H

4a-4c

OH

6a-6c

(iii) NaH/THF, 80 °C, 8 h; N,N-dimethylcarbamoyl chloride, 16 h.

Compound	Х	Yield / %	Physical aspect	Melting point / °C
5a	Н	46	crystal solid	101.2-101.5
5b	F	30 ^a	brown oil	-
5c	OCH ₃	42	brown oil	-
6a	Н	36	yellow oil	-
6b	F	42	brown oil	-
6с	OCH ₃	40	brown oil	-

^aMixture of *cis* and *trans* isomers.

Table S4. Yields, physical aspect and melting points of cis and trans 3-arylaminocyclohexyl N,N-dimethylcarbamate hydrochlorides (5a', 5c'; 6a'-6c')

6a-6c

6a'-6c'

(<i>iv</i>) CH ₂ Cl ₂ , 37% HCl, 0-5 °C, 5 min.								
Compound	Х	Yield / %	Physical aspect ^a					
5a'	Н	96	white solid					
5c'	OCH ₃	93	brown solid					
5a'	Н	91	yellow solid					
5b'	F	95	gray solid					
5c'	OCH ₃	92	brown solid					

^aMelting point was not possible to measure because the compounds are hygroscopic.

	$\begin{array}{c c} O \\ \hline & 1 \\ \hline & 2 \\ \hline & 1 \\ \hline & 2 \\ \hline & 5 \\ \hline & 4 \\ \hline & 1 \\ \hline & 1 \\ \hline & 1 \\ \hline & 5 \\ \hline & 1 \\ \hline & 5' \\ H \\ \end{array} \begin{array}{c} 3' \\ 4' \\ 5' \\ \hline & 5' \\ H \end{array}$				O 1 $2'$ $4'$ F 6 $3'$ $4'$ F $5'$ H $6'$				$\begin{array}{c} O \\ 6 \\ 5 \\ 5 \\ 4 \end{array}$		
		2a		2b				2c			
C/H	δ ¹ H / ppm	Multiplicity (J / Hz)	δ ¹³ C/ ppm	δ ¹ H / ppm	Multiplicity (J / Hz)	δ ¹³ C/ ppm	Multiplicity (J / H)	δ ¹ H / ppm	Multiplicity (J / Hz)	δ ¹³ C / ppm	
1	_	_	209.8	-	_	209.7	_	_	_	209.9	
2 ax	2.29	m	48.8	2.25	m	48.5	-	2.25	m	48.7	
2 eq	2.84	m	-	2.79	m	-	-	2.78	m	_	
3	3.79	dddd (8.2, 8.2, 3.9, 3.9)	52.5	3.69	dddd (8.6, 8.6, 4.4, 4.4)	53.0	_	3.68	m	53.4	
4 ax	1.70	m	31.3	1.67	m	31.1	-	1.66	m	31.2	
4 eq	2.18	m	-	2.16	m	-	-	2.14	m	_	
5 ax	1.75	m	22.3	1.70	m	22.2	-	1.68	m	22.2	
5 eq	2.05	m	-	2.02	m	-	-	2.02	m	_	
6 ax	2.36	m	41.3	2.36	m	41.2	-	2.34	m	41.2	
6 eq	2.36	m	-	2.36	m	-	-	2.34	m	_	
1'	-	m	146.4	-	-	142.7	d (1.9)	-	m	140.2	
2'	6.59	m	113.5	6.51	m	114.5	d (7.3)	6.57	d (9.9)	115.0	
3'	7.18	m	129.6	6.87	m	115.9	d (22.3)	6.76	d (9.9)	115.2	
4'	6.72	m	118.1	_	-	156.0	d (235.6)	-	-	152.0	
5'	7.18	m	129.6	6.87	m	115.9	d (22.3)	6.76	d (9.9)	115.2	
6'	6.59	m	113.5	6.51	m	114.5	d (7.3)	6.57	d (9.9)	115.0	
NH	3.59	sl	-	3.53	sl	-	-	3.35	sl	-	
OCH ₃	-	-	_	-	_	_	-	3.73	sl	56.0	

Table S5. ¹H and ¹³C NMR chemical shift (ppm), coupling constants (Hz) and the signal multiplicity of 3-arylaminocyclohexanones (2a-2c) in CDCl₃

		H 2 3 N H e	3' 4' 5'		$ \begin{array}{c} $	3'	$\begin{array}{c} OH \\ 6 \\ 5 \\ 5 \\ 4 \end{array}$			
		4 a			4k)			4c	
C/H	δ ¹ H / ppm	Multiplicity (J / Hz)	δ ¹³ C / ppm	δ ¹ H / ppm	Multiplicity (J / Hz)	δ ¹³ C / ppm	Multiplicity (J / Hz)	δ ¹ H / ppm	Multiplicity (J / Hz)	δ ¹³ C/ ppm
1	4.15	m	67.3	4.17	m	67.0	-	4.13	m	67.2
2 ax	1.56	m	40.0	1.54	m	39.8	-	1.53	m	40.1
2 eq	1.99	m	_	2.00	m	_	-	1.97	m	_
3	3.76	dddd (9.1, 9.1, 3.8, 3.8)	47.5	3.70	dddd (9.1, 9.1, 3.8, 3.8)	48.0	-	3.66	dddd (8.9, 8.9, 3.9, 3.9)	48.5
4 ax	1.27	m	32.4	1.29	m	32.3	-	1.25	m	32.5
4 eq	1.97	m	_	1.99	m	_	-	1.94	m	-
5 ax	1.61	m	19.6	1.61	m	19.4	-	1.60	m	19.6
5 eq	1.80	m	_	1.79	m	_	-	1.76	m	-
6 ax	1.62	m	33.5	1.64	m	33.2	-	1.62	m	33.5
6 eq	1.62	m	_	1.64	m	_	-	1.62	m	-
1'	-	m	147.4	-	-	141.5	d (1.9)	-	m	141.5
2'	6.01	m	113.4	6.57	m	115.0	d (7.3)	6.59	d (9.9)	115.0
3'	7.16	m	129.5	6.87	m	115.1	d (22.3)	6.77	d (9.9)	115.1
4'	6.67	m	117.3	-	-	152.2	d (235.6)	-	-	152.2
5'	7.16	m	129.5	6.87	m	115.1	d (22.3)	6.77	d (9.9)	115.1
6'	6.01	m	113.4	6.57	m	115.0	d (7.3)	6.59	d (9.9)	115.0
NH	-	-	-	-	sl	-	-	_	_	_
OCH ₃	-	_	_	-	_	_	-	3.74	sl	56.0

Table S6. ¹H and ¹³C NMR chemical shift (ppm), coupling constants (Hz) and the signal multiplicity of *trans*-3-arylaminocyclohexanols (4a-4c) in CDCl₃

	(H ₃ C 8	$)_{2}N \xrightarrow{7} O$	3' 4' 5 6'	$(H_3C)_2N$ 7 0 8 0 $(H_3C)_2N$ 7 0				
С/Н	δ^{1} H / ppm	Multiplicity (J / Hz)	δ^{13} C / ppm	δ^{1} H / ppm	Multiplicity (J / Hz)	δ^{13} C / ppm		
1	4.74	dddd (10.1, 10.1, 4.1, 4.1)	72.3	4.73	dddd (10.1, 10.1, 4.1, 4.1)	72.6		
2 ax	1.25	m	38.8	1.23	m	39.6		
2 eq	2.41	m	_	2.41	m	_		
3	3.41	dddd (10.5, 10.5, 3.8, 3.8)	50.4	3.32	dddd (10.5, 10.5, 3.8, 3.8)	51.8		
4 ax	1.33	m	31.9	1.11	m	32.2		
4 eq	2.02	m	_	2.03	m	_		
5 ax	1.36	m	21.4	1.38	m	21.8		
5 eq	1.82	m	-	1.86	m	_		
6 ax	1.15	m	32.5	1.33	m	32.8		
6 eq	2.02	m	-	2.03	m	_		
1'	_	m	147.1	-	m	141.5		
2'	6.59	m	113.4	6.59	d (5.0)	115.3		
3'	7.17	m	129.5	6.78	d (5.0)	115.2		
4'	6.68	m	117.4	-	_	152.6		
5'	7.17	m	129.5	6.78	d (5.0)	115.2		
6'	6.59	m	113.4	6.59	d (5.0)	115.3		
7	_	_	156.2	-	_	156.5		
8	2.90	S	37.6	2.91	sl	35.9		
NH	3.60	sl	-	-	-	_		
OCH ₃	_	-	_	3.76	S	56.2		

Table S7. ¹H and ¹³C NMR chemical shift (ppm), coupling constants (Hz) and the signal multiplicity of *cis*-3-arylaminocyclohexyl *N*,*N*-dimethylcarbamates (**5a**, **5c**) in CDCl₃

	(H ₃ C) ₂ N ⁻ 8	$ \begin{array}{c} 0\\ 7\\ 6\\ 1\\ 2\\ 5\\ 4 \end{array} $	3' 4'	(H ₃ C) 8	$\begin{array}{c} 0\\ 2^{N} & 7 & 0\\ \hline & 6 & 1 & 2\\ \hline & 5 & 4 & 3 & \end{array}$	2' /''N	3' 4' F	(H ₃ C) ₂ N	$ \begin{array}{c} $	⁴ OCH ₃
		 H	6'			 H	6'		6' H	
		6a			6b	•			6c	
C/H	δ 'H / ppm	Multiplicity (J / Hz)	δ ¹³ C / ppm	δ ¹ H / ppm	Multiplicity (J / Hz)	δ ¹³ C / ppm	Multiplicity (J / Hz)	δ 'H / ppm	Multiplicity (J / Hz)	δ ¹³ C / ppm
1	5.09	m	70.8	5.07	m	70.9	-	5.08	m	71.0
2 ax	1.41	m	37.5	1.43	m	39.5	-	1.43	m	37.8
2 eq	2.18	m	-	2.18	m	-	-	2.17	m	-
3	3.63	dddd (10.1, 10.1, 3.8, 3.8)	47.9	3.54	dddd (9.9, 9.9, 3.8, 3.8)	48.7	-	3.54	dddd (10.0, 10.0, 3.8, 3.8)	49.0
4 ax	1.55	m	30.2	1.53	m	30.3	-	1.53	m	30.4
4 eq	1.80	m	-	1.81	m	-	-	1.79	m	-
5 ax	1.68	m	20.0	1.66	m	20.2	-	1.67	m	20.2
5 eq	1.68	m	-	1.66	m	-	-	1.67	m	-
6 ax	1.24	m	32.5	1.22	m	32.5	-	1.21	m	32.7
6 eq	2.04	m	-	2.03	m	-	-	2.06	m	-
1'	-	m	147.4	-	-	143.6	d (1.9)	-	m	141.5
2'	6.58	m	113.0	6.50	m	114.1	d (7.3)	6.55		114.8
3'	7.16	m	129.5	6.86	m	116.0	d (22.3)	6.77	d (9.9)	115.2
4'	6.67	m	117.3	-	-	155.2	d (235.6)	-	-	152.2
5'	7.16	m	129.5	6.86	m	116.0	d (22.3)	6.77	d (9.9)	115.2
6'	6.58	m	113.0	6.50	m	114.1	d (7.3)	6.55	d (9.9)	114.8
7	-	-	156.0	-	-	157.3	-	-	-	157.3
8	2.95	s	36.3	2.94	S	36.3	-	2.94	S	36.3
NH	3.51	sl	-	_	sl	-	-	-	_	-
OCH ₃	-	-	-	_	-	-	-	3.74	S	56.0

Table S8. ¹H and ¹³C NMR chemical shift (ppm), coupling constants (Hz) and the signal multiplicity of *trans*-3-arylaminocyclohexyl *N*,*N*-dimethylcarbamates (**6a-6c**) in CDCl₃

	(H ₃ C) ₂ :	$ \begin{array}{c} O\\ N & 7 & O\\ \hline 6 & 1 & 2 \\ 5 & 3 & + 1 \\ \hline 6 & 3 & + 1 \\ \hline 6 & 1 & 2 \\ \hline 5 & 4 & - NH \\ CI & \\ H \end{array} $	3' 4' 6' 5'	$(H_{3}C)_{2}N \xrightarrow{7} O$				
		5a'			5c'			
C/H	δ $^1\mathrm{H}$ / ppm	Multiplicity	δ $^{13}{ m C}$ / ppm	δ $^{1}\mathrm{H}$ / ppm	Multiplicity (J / Hz)	δ $^{13}\mathrm{C}$ / ppm		
1	4.47	m	71.3	4.49	m	70.2		
2 ax	1.75	m	40.6	1.71	m	33.6		
2 eq	2.27	m	-	2.30	m	_		
3	3.29	m	60.5	3.22	m	54.5		
4 ax	1.25	m	28.6	1.55	m	27.6		
4 eq	2.23	m	-	2.26	m	_		
5 ax	1.23	m	21.7	1.26	m	20.1		
5 eq	1.75	m	-	1.78	m	-		
6 ax	1.91	m	31.2	1.27	m	30.1		
6 eq	1.91	m	-	1.96	m	_		
1'	_	m	134.0	_	m	125.9		
2'	7.39	m	130.0	6.84	d (9.9)	123.6		
3'	7.55	m	124.1	7.42	d (9.9)	113.9		
4'	7.39	m	129.2	-	-	154.6		
5'	7.55	m	124.1	7.42	d (9.9)	113.9		
6'	7.39	m	130.0	6.84	d (9.9)	123.6		
7	-	_	155.7	-	_	158.3		
8	2.84	s	36.4	2.84	sl	35.3		
NH	11.3	sl	-	-	_	_		
OCH ₃	-	_	-	3.79	S	58.8		

Table S9. ¹H and ¹³C NMR chemical shift (ppm), coupling constants (Hz) and the signal multiplicity of *cis*-3-arylaminocyclohexyl *N*,*N*-dimethylcarbamate hydrochlorides (**5a**', **5c**') in CDCl₃

Table S10. ¹H and ¹³C NMR chemical shift (ppm), coupling constants (Hz) and the signal multiplicity of *trans*-3-arylaminocyclohexyl *N*,*N*-dimethylcarbamate hydrochlorides (**6a'-6c'**) in CDCl₃

	(H ₃ C) ₂ N 8	O 7 6 1 2 5 4 -1 1 1 1 1 1 1 1 1 1	3' 4' 6'	(H ₃ C	$ \begin{array}{c} $	2' + 1' NH H 6	3' 4' F 5' 5'	0 (H ₃ C) ₂ N 7 8 €	$\begin{array}{c} O \\ 1 \\ 2 \\ 5 \\ 4 \\ - \\ C \\ H \end{array}$	³ 4' OCH ₃ 5'
C/H	δ 'Η /	Multiplicity	δ ¹³ C/	δ ¹ H/	Multiplicity	δ ¹³ C/	Multiplicity	δ ¹ H /	6c' Multiplicity	δ ¹³ C/
1	5 02		69 5	5 07		69.3	(3 / 112)	5 05	(J / 112)	71.2
2 av	1.83	m	33.2	1.83	m	33.1	_	1.81	m	36.4
2 ea	2.20	m	_	2.22	m	_	_	2.20	m	_
3	3.52	m	58.9	3.48	m	59.3	_	3.46	m	55.5
4 ax	1.55	m	28.7	1.72	m	28.6	_	1.72	m	28.6
4 eq	1.79	m	_	2.23	m	_	_	2.26	m	_
5 ax	1.59	m	19.3	1.54	m	19.3	_	1.61	m	21.1
5 eq	1.59	m	_	1.63	m	_	_	1.61	m	_
6 ax	1.79	m	29.0	1.39	m	29.0	_	1.25	m	28.0
6 eq	2.21	m	_	2.21	m	_	-	1.83	m	_
1'	_	m	133.8	_	m	129.5	d (1.9)	_	m	127.6
2'	7.39	m	130.0	7.09	m	117.1	d (7.3)	6.86	d (9.9)	114.9
3'	7.55	m	124.3	7.56	m	126.4	d (22.3)	7.47	d (9.9)	124.6
4'	7.39	m	129.4	_	m	162.8	d (235.6)	-	-	155.6
5'	7.55	m	124.3	7.56	m	126.4	d (22.3)	7.47	d (9.9)	124.6
6'	7.39	m	130.0	7.09	m	117.1	d (7.3)	6.86	d (9.9)	114.6
7	-	-	155.5	_	-	155.4	-	-	-	159.3
8	2.83	s	36.3	2.85	S	36.3	-	2.85	S	36.3
NH	11.3	sl	-	11.3	sl	-	-	11.2	sl	-
OCH ₃	-	-	-	_	-	-	-	3.80	S	59.9

Figure S1. Representation of the full protein BuChE complexed with compound 6c'.

Figure S2. Binding mode of 6c' and AChE. The compounds are rendered in green ball-and-stick models, and the residues are rendered in grey colored sticks.

Figure S3. AChE non-covalent interaction (NCI) isosurfaces (blue to violet: strongly attractive; green: weakly attractive; red to orange: repulsive).

Figure S4. ¹H NMR spectrum (300 MHz, CDCl₃) of 3-(phenylamino)cyclohexanone (2a).

Figure S5. ¹³C NMR spectrum (75 MHz, CDCl₃) of 3-(phenylamino)cyclohexanone (2a).

Figure S6. ¹H NMR spectrum (300 MHz, CDCl₃) of 3-(4-fluorophenylamino)cyclohexanone (2b).

Figure S7. ¹³C NMR spectrum (75 MHz, CDCl₃) of 3-(4-fluorophenylamino)cyclohexanone (2b).

Figure S8. ¹H NMR spectrum (300 MHz, CDCl₃) of 3-(4-methoxyphenylamino)cyclohexanone (2c).

Figure S9. ¹³C NMR spectrum (75 MHz, CDCl₃) of 3-(4-methoxyphenylamino)cyclohexanone (2c).

Figure S10. ¹H NMR spectrum (300 MHz, CDCl₃) of mixture (75:25) of *cis*-3-(phenylamino)cyclohexanol (3a) and *trans*-3-(phenylamino)cyclohexanol (4a).

Figure S11. ¹³C NMR spectrum (75 MHz, CDCl₃) of mixture (75:25) of *cis*-3-(phenylamino)cyclohexanol (3a) and *trans*-3-(phenylamino)cyclohexanol (4a).

Figure S12. ¹H NMR spectrum (300 MHz, CDCl₃) of mixture (75:25) of *cis*-3-(4-fluorophenylamino)cyclohexanol (**3b**) and *trans*-3-(4-fluorophenylamino) cyclohexanol (**4b**).

Figure S13. ¹H NMR spectrum (300 MHz, CDCl₃) of mixture (75:25) of *cis*-3-(4-methoxyphenylamino)cyclohexanol (3c) and *trans*-3-(4-methoxyphenylamino)cyclohexanol (4c).

Figure S14. ¹H NMR spectrum (300 MHz, CDCl₃) of *trans*-3-(phenylamino)cyclohexanol (4a).

Figure S15. ¹³C NMR spectrum (75 MHz, CDCl₃) of *trans*-3-(phenylamino)cyclohexanol (4a).

Figure S16. ¹H NMR spectrum (300 MHz, CDCl₃) of *trans*-3-(4-fluorophenylamino)cyclohexanol (4b).

Figure S17. ¹³C NMR spectrum (75 MHz, CDCl₃) of *trans*-3-(4-fluorophenylamino)cyclohexanol (4b).

Figure S18. ¹H NMR spectrum (300 MHz, CDCl₃) of *trans*-3-(4-methoxyphenylamino)cyclohexanol (4c).

Figure S19. ¹³C NMR spectrum (75 MHz, CDCl₃) of *trans*-3-(4-methoxyphenylamino)cyclohexanol (4c).

Figure S20. ¹H NMR spectrum (300 MHz, CDCl₃) of *cis*-3-(phenylamino)cyclohexyl *N*,*N*-dimethylcarbamate (5a).

Figure S21. ¹³C NMR spectrum (75 MHz, CDCl₃) of *cis*-3-(phenylamino)cyclohexyl *N*,*N*-dimethylcarbamate (5a).

cyclohexyl N,N-dimethylcarbamate (6b).

Figure S23. ¹H NMR spectrum (300 MHz, CDCl₃) of *cis*-3-(4-methoxyphenylamino)cyclohexyl *N*,*N*-dimethylcarbamate (5c).

Figure S24. ¹³C NMR spectrum (75 MHz, CDCl₃) of *cis*-3-(4-methoxyphenylamino)cyclohexyl *N*,*N*-dimethylcarbamate (5c).

Figure S25. ¹H NMR spectrum (300 MHz, CDCl₃) of *trans*-3-(phenylamino)cyclohexyl N,N-dimethylcarbamate (6a).

Figure S26. ¹³C NMR spectrum (75 MHz, CDCl₃) of *trans*-3-(phenylamino)cyclohexyl N,N-dimethylcarbamate (6a).

Figure S27. ¹H NMR spectrum (300 MHz, CDCl₃) of *trans*-3-(4-fluorophenylamino)cyclohexyl N,N-dimethylcarbamate (6b).

Figure S28. ¹³C NMR spectrum (75 MHz, CDCl₃) of *trans*-3-(4-fluorophenylamino)cyclohexyl N,N-dimethylcarbamate (6b).

Figure S29. ¹H NMR spectrum (300 MHz, CDCl₃) of trans-3-(4-methoxyphenylamino)cyclohexyl N,N-dimethylcarbamate (6c).

Figure S30. ¹³C NMR spectrum (75 MHz, CDCl₃) of *trans*-3-(4-methoxyphenylamino)cyclohexyl N,N-dimethylcarbamate (6c).

Figure S31. ¹H NMR spectrum (300 MHz, CDCl₃) of *cis*-3-(phenylamino)cyclohexyl *N*,*N*-dimethylcarbamate hydrochloride (5a').

Figure S32. ¹³C NMR spectrum (75 MHz, CDCl₃) of *cis*-3-(phenylamino)cyclohexyl N,N-dimethylcarbamate hydrochloride (5a').

Figure S33. ¹H NMR spectrum (300 MHz, CDCl₃) of *cis*-3-(4-methoxyphenylamino)cyclohexyl *N*,*N*-dimethylcarbamate hydrochloride (5c').

Figure S34. ¹³C NMR spectrum (75 MHz, CDCl₃) of cis-3-(4-methoxyphenylamino)cyclohexyl N,N-dimethylcarbamate hydrochloride (5c³).

Figure S35. ¹H NMR spectrum (300 MHz, CDCl₃) of trans-3-(phenylamino)cyclohexyl N,N-dimethylcarbamate hydrochloride (6a').

Figure S36. ¹³C NMR spectrum (75 MHz, CDCl₃) of trans-3-(phenylamino)cyclohexyl N,N-dimethylcarbamate hydrochloride (6a').

Figure S37. ¹H NMR spectrum (300 MHz, CDCl₃) of trans-3-(4-fluorophenylamino)cyclohexyl N,N-dimethylcarbamate hydrochloride (6b').

Figure S38. ¹³C NMR spectrum (75 MHz, CDCl₃) of trans-3-(4-fluorophenylamino)cyclohexyl N,N-dimethylcarbamate hydrochloride (6b').

Figure S39. ¹H NMR spectrum (300 MHz, CDCl₃) of trans-3-(4-methoxyphenylamino)cyclohexyl N,N-dimethylcarbamate hydrochloride (6c').

Figure S40. ¹³C NMR spectrum (75 MHz, CDCl₃) of trans-3-(4-methoxyphenylamino)cyclohexyl N,N-dimethylcarbamate hydrochloride (6c').

Figure S41. HRMS (ESI+) spectra of cis-3-(phenylaminocyclohexyl) N,N-dimethylcarbamate (5a).

Figure S44. HRMS (ESI+) spectra of *trans*-3-(4-fluorophenylamino)cyclohexyl N,N-dimethylcarbamate (6b).

Figure S45. HRMS (ESI+) spectra of trans-3-(4-methoxyphenylamino)cyclohexyl N,N-dimethylcarbamate (6c).

Figure S46. Representation of the chemical structure of ligand 6c'.

Parameters of ligand 6c'

Bonds

HCM	4M Cl	R 3	42.991	1 1.0930
CR	NC=0	D 33	5.651	1.4360
HNR	P NR	P 4	43.528	8 1.0280
CR	CR	306.	432	1.5080
HCM	IM C	B 3	81.853	3 1.0840
NRP	CR	276	5.638	1.4800
NRP	CB	312	2.837	1.4500
NC=	O C=	0 4	19.491	1.3690
CB	CB	401.	068	1.3740
CB	OR	404.	019	1.3760
CR	OR	363.	214	1.4180
OR	C=O	417	7.476	1.3550
C=O	O=C	93	1.963	1.2220

Angles

CB CB CB 48.145 119.9770 CB CB NRP 74.125 116.4230 CB CB HCMM 40.517 120.5710 CB CB OR 69.663 116.4950 CR CR CR 61.243 109.6080 CR CR HCMM 45.770 110.5490 HCMM CR HCMM 37.134 108.8360 CR CR NRP 84.848 106.4930 HCMM CR NRP 62.754 106.2240 CR CR OR 71.390 108.1330 HCMM CR OR 56.205 108.5770 CB NRP CR 82.113 109.0450 CB NRP HNRP 51.599 108.6680 CR NRP HNRP 41.452 111.2060 HNRP NRP HNRP 41.596 107.7870 CR OR C=O 66.424 108.0550 OR C=O O=C 83.120 124.4250 OR C=O NC=O 101.112 112.1870 O=C C=O NC=O 65.273 127.1520 C=O NC=O CR 59.084 119.6000 CR NC=O CR 80.386 117.9090 NC=O CR HCMM 53.255 107.6460 CB OR CR 77.363 102.8460

Dihedrals

CB CB CB CB 3.500 2 180.00 3.500 2 180.00 CB CB CB HCMM CB NRP CR CR 0.125 3 0.00 CB NRP CR HCMM 0.125 3 0.00 CB CB NRP CR 0.000 1 0.00CB CB NRP HNRP 0.000 1 0.00 CB CB CB OR 3.500 2 180.00 CB CB CB NRP 3.500 2 180.00 CB CB OR CR 2.191 2 180.00 CB OR CR HCMM 0.053 3 0.00 CR CR CR CR 0.051 1 0.00

CR CR CR CR 0.341 2 180.00 CR CR CR CR 0.166 3 0.00 CR CR CR HCMM 0.320 1 0.00 CR CR CR HCMM -0.315 2 180.00 CR CR CR HCMM 0.132 3 0.00 CR CR OR C=O -0.274 1 0.00 CR CR OR C=O 0.160 3 0.00 CR CR CR OR -0.344 1 0.00 0.879 2 180.00 CR CR CR OR CR CR CR OR 0.238 3 0.00 CR CR CR NRP -0.324 1 0.00 CR CR CR NRP 0.275 2 180.00 CR CR CR NRP 0.295 3 0.00 CR CR NRP HNRP 0.093 3 0.00CR OR C=O O=C 0.341 1 0.00 CR OR C=O O=C 3.592 2 180.00 CR OR C=O O=C -0.468 3 0.00 CR OR C=O NC=O 2.750 2 180.00 HCMM CR CR HCMM 0.142 1 0.00 HCMM CR CR HCMM -0.693 2 180.00 HCMM CR CR HCMM 0.157 3 0.00 HCMM CR CR NRP 0.346 1 0.00 HCMM CR CR NRP -0.265 2 180.00 HCMM CR CR NRP 0.139 3 0.00 HCMM CR CR OR -0.327 1 0.00 0.536 2 180.00 HCMM CR CR OR HCMM CR CR OR 0.140 3 0.00 HCMM CR NRP HNRP 0.130 3 0.00 HCMM CR OR C=O 0.286 1 0.00 HCMM CR OR C=O -0.152 3 0.00 NRP CB CB HCMM 3.500 2 180.00 HCMM CB CB HCMM 3.500 2 180.00 HCMM CB CB OR 3.500 2 180.00 OR C=O NC=O CR 3.000 2 180.00 C=O NC=O CR HCMM -1.050 1 0.00 C=O NC=O CR HCMM 0.681 2 180.00 C=O NC=O CR HCMM 0.011 3 0.00O=C C=O NC=O CR -0.160 1 0.00 O=C C=O NC=O CR 3.147 2 180.00 O=C C=O NC=O CR -0.073 3 0.00 CR NC=O CR HCMM 0.390 3 0.00

Improper

CB CB NRP CB 2.519 0 0.00 CB CB CB HCMM 1.079 0 0.00 NRP CR CB HNRP 0.000 0 0.00 NRP HNRP CB HNRP 0.000 0 0.00 CR CR NRP CR 0.000 0 0.00 CR CR NRP HCMM 0.000 0 0.00 CR CR CR HCMM 0.000 0 0.00 CR HCMM CR HCMM 0.000 0 0.00 CR CR CR OR 0.000 0 0.00 CR OR CR HCMM 0.000 0 0.00 C=O NC=O OR O=C 9.356 0 0.00

NC=O CR C=O CR -1.439 0 0.00 CR HCMM NC=O HCMM 0.000 0 0.00 CB CB CB OR 3.454 0 0.00 CR HCMM OR HCMM 0.000 0 0.00

Nonbonded nbxmod 5 atom cdiel shift vatom vdistance vswitch - cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5 CB 0.000000 - 0.0700001.992400 CR 0.000000 -0.055000 2.175000 0.000000 -0.010000 1.900000 HCMM 0.000000 -0.022000 1.320000 NRP 0.000000 -0.200000 1.850000 HNRP 0.000000 -0.046000 0.224500 OR 0.000000 -0.152100 1.770000 C=O0.000000 -0.110000 2.000000 O=C 0.000000 -0.120000 1.700000 0.000000 1.400000 -0.120000NC=O 0.000000 -0.200000 1.850000

Topology of ligand 6c'

MASS 201 CB 12.011000 MASS 202 CR 12.011000 MASS 203 HCMM 1.007940 MASS 204 NRP 14.006700 MASS 205 HNRP 1.007940 MASS 206 OR 15.999400 MASS 207 C=O 12.011000 MASS 208 O=C 15.999400 MASS 209 NC=O 14.006700 AUTOGENERATE ANGLES DIHE DEFA FIRS NONE LAST NONE RESILIG 1.000 GROUP ATOM C6 CB 0.3640 ATOM C7 CB -0.1500 ATOM C8 CB -0.1500 ATOM C9 CB -0.1500 ATOM C10 CB -0.1500 ATOM C11 CB 0.0825 ATOM C CR 0.0000 ATOM C1 CR 0.0000 ATOM C2 CR 0.0000 ATOM C3 CR 0.5030 ATOM C4 CR 0.0000 ATOM C5 CR 0.2800 ATOM H HCMM 0.0000 ATOM H1 HCMM 0.0000 ATOM H2 HCMM 0.0000 ATOM H3 HCMM 0.0000 ATOM H4 HCMM 0.0000

ATOM H5 HCMM 0.0000 ATOM H6 HCMM 0.0000 ATOM H7 HCMM 0.0000 ATOM H8 HCMM 0.0000 ATOM H9 HCMM 0.0000 ATOM N NRP -0.7670 ATOM H10 HNRP 0.4500 ATOM H11 HCMM 0.1500 ATOM H12 HCMM 0.1500 ATOM H13 HCMM 0.1500 ATOM H14 HCMM 0.1500 ATOM O OR -0.4300 ATOM C12 C=O 0.7800 ATOM O1 O=C -0.5700 ATOM N1 NC=O -0.6602 ATOM C13 CR 0.3001 ATOM H15 HCMM 0.0000 ATOM H16 HCMM 0.0000 ATOM H17 HCMM 0.0000 ATOM C14 CR 0.3001 ATOM H18 HCMM 0.0000 ATOM H19 HCMM 0.0000 ATOM H20 HCMM 0.0000 ATOM O2 OR -0.3625 ATOM C15 CR 0.2800 ATOM H21 HCMM 0.0000 ATOM H22 HCMM 0.0000 ATOM H23 HCMM 0.0000 ATOM H24 HNRP 0.4500 BOND H20 C14 BOND H19 C14 BOND H C2 BOND C14 H18 BOND C14 N1 BOND H1 C1 BOND H24 N BOND H5 C3 BOND H2 C1 BOND H21 C15 BOND H17 C13 BOND C2 C1 BOND C2 C3 BOND C2 H9 BOND C1 C BOND H12 C8 BOND N C3 BOND N C6 BOND N H10 BOND N1 C13 BOND N1 C12 BOND C8 C6 BOND C8 C10 BOND H14 C10 BOND C3 C4